Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-12T13:24:46.087Z Has data issue: false hasContentIssue false

Synthesis, Structure And Applications Of TiO2 Gels

Published online by Cambridge University Press:  28 February 2011

J. Livage*
Affiliation:
Spectrochimie du Solide, Université Pierre et Marie Curie, 4 place Jussieu, 75230 Paris Cedex 05, France.
Get access

Abstract

TiO2 gels are usually obtained through hydrolysis of titanium alkoxides. Chemical additives can however react with the precursor at a molecular level and therefore modify the hydrolysis-condensation reactions. Several examples will be described :acetic acid, acetylacetone or Cr(acac)3 The whole solgel process is followed all the way from the precursors to the gel and each step is characterized by spectroscopic experiments (Infra-red, N.M.R, E.S.R.). Some electronic properties of TiO2 gels are then described. Chemical additives allow an optimization of the sol-gel process according to each specific applications : electrochromic display devices, photoanodes or photochemical reactions.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Klein, L.C., Ann. Rev. Mater. Sci., 15, 227 (1985).CrossRefGoogle Scholar
2. Iler, R.K., the Chemistry of Silica (Wiley, New-York 1979).Google Scholar
3. Mazdiyasni, K.S., Ceramics International, 8, 42 (1982).CrossRefGoogle Scholar
4. Wallace, S. and Hench, L.L., in Better Ceramics through Chemistry, edited by Brinker, C.J., Clark, D.E., Ulrich, D.R. (North-Holland 1984) p. 47.Google Scholar
5. Ulrich, D.R., Ceramic Bulletin, 64, 1444 (1985).Google Scholar
6. Barringer, E.A. and Bowen, H.K., Langmuir, 1, 414 (1985).CrossRefGoogle Scholar
7. Yan, M.F. and Rhodes, W.W., Mater. Sci. and Eng., 61, 59 (1983).CrossRefGoogle Scholar
8. Doeuff, S., Henry, M., Sanchez, C. and Livage, J., J. Non-Cryst. Solids, (submitted).Google Scholar
9. Nakamoto, K., in Infra-red and Raman spectra of Inorganic and Coordination Compounds, 3rd Edition (John Wiley, New-York, 1978).Google Scholar
10. Thiele, Von K.H. and Panse, M., Z. Anorg. Allg. Chem., 441, 23 (1978).CrossRefGoogle Scholar
11. Mc Devitt, N.T. and Baun, W.L., Spectrochimica Acta, 20, 799 (1964).CrossRefGoogle Scholar
12. Duonghong, D., Borgarello, E. and Grätzel, M., J. Am. Chem. Soc., 103, 4685 (1981).CrossRefGoogle Scholar
13. Kordas, G., Weeks, R.A. and Klein, L.C., J. of Non-Cryst. Solids, 71, 327 (1985).CrossRefGoogle Scholar
14. Wolf, A.A., Friebele, E.J. and Tran, D.C., J. of Non-Cryst. Solids, 71, 345 (1985).CrossRefGoogle Scholar
15. Doeuff, S., Henry, M., Sanchez, C. and Livage, J., J. of Non-Cryst. Solids (submitted).Google Scholar
16. Barry, T.I., Solid State Comm., 4, 123 (1966).CrossRefGoogle Scholar
17. Gerritsen, H.J., Harrison, S.E., Lewis, H.R. and Wittke, J.P., Phys. Rev. Letters, 2, 153 (1959).CrossRefGoogle Scholar
18. Ohzuku, T. and Hirai, T., Electrochemica Acta, 27, 1263 (1982).CrossRefGoogle Scholar
19. Dislich, H. and Hinz, P., J. Non-Cryst. Solids, 48, 11 (1982).CrossRefGoogle Scholar
20. Kochev, K.D., Solar Energy Materials, 12, 249 (1985).CrossRefGoogle Scholar
21. Ghosh, A.K. and Maruska, H.P., J. Electrochem. Soc., 124, 1516 (1977).CrossRefGoogle Scholar
22. Minoura, H., Nasu, M. and Takashi, Y., Ber. Bunsenges Phys. Chem., 89, 1064 (1985).CrossRefGoogle Scholar
23. Grätzel, M., Acc. Chem. Res., 14, 376 (1981).CrossRefGoogle Scholar
24. Henglein, A., Pure and Appl. Chem., 56, 1215 (1984).CrossRefGoogle Scholar
25. Jaeger, C.D. and Bard, A., J. Phys. Chem., 83, 3146 (1979).CrossRefGoogle Scholar