Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-21T03:59:35.387Z Has data issue: false hasContentIssue false

Systematic Approach to the Synthesis of Organic-Inorganic Nanocomposites Based on Dmta Measurements and Ir Spectroscopy

Published online by Cambridge University Press:  10 February 2011

Peter Müller
Affiliation:
Institut fuer Neue Materialien, Im Stadtwald, Geb. 43, D-66123 Saarbruecken, Germany
Carsten Becker
Affiliation:
Institut fuer Neue Materialien, Im Stadtwald, Geb. 43, D-66123 Saarbruecken, Germany
Helmut Schmidt
Affiliation:
Institut fuer Neue Materialien, Im Stadtwald, Geb. 43, D-66123 Saarbruecken, Germany
Get access

Abstract

Sol-gel derived organic-inorganic hybrid materials with potential fields of application as refractive optical components for example laser diode bars and ophthalmic lenses are presented. The main components of the hybrid materials under investigation are precondensed methacryloxypropyltrimethoxysilane (MPTS, denoted: M) with an organically polymerisable methacrylic functionality and tetraethyleneglycoldimethacrylate (TEGDMA, denoted: T) as crosslinking organic monomer with two polymerisable double bonds. The molar ratios of the components ranged from M/T 10/90 up to M/T 70/30. The polymer derived from pure TEGDMA (M/T 0/100) served as a reference material. In addition to this nanoscaled TiO2 particles (5 wt.% and 10 wt.%) were incorporated in the organic-inorganic M/T 30/70 matrix to increase the refractive index of the resulting nanocomposites. For the preparation of the different systems, precondensed MPTS was mixed with TEGDMA, the nanoparticulate titania sol (when used), an appropriate photoinitiator and a thermoinitiator. The reaction mixtures were polymerised photochemically and/or thermally. The propagation of the free radical polymerisation reaction after photopolymerisation and subsequent thermal curing was followed by IR-spectroscopy, showing that the degree of double bond conversion is strongly increased by the thermal curing step. Incorporation of increasing amounts of TiO2 nanoparticles resulted in reduction of the double bond conversion compared to the corresponding unfilled system. The homogeneous dispersion of the titania particles in the completely cured M/T 30/70 matrix could be manifested by high resolution transmission electron microscopy (HTEM). The thermomechanical properties of the completely cured nanocomposites were monitored by dynamic mechanical thermal analysis (DMTA) showing a strong dependence on composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Oliveira, P.W., Krug, H., Schmidt, H., SPIE 3136, Sol-Gel Optics IV, 442 (1997).Google Scholar
[21] Krug, H., Merl, N. and Schmidt, H., J. Non-Cryst. Solids 147&148, 447450 (1992).10.1016/S0022-3093(05)80656-8Google Scholar
[3] Oliveira, P.W., Krug, H., Künstle, H. and Schmidt, H., SPIE 2288, Sol-Gel Optics III, 554562 (1994).10.1117/12.188991Google Scholar
[4] Oliveira, P.W., Krug, H., Müller, P. and Schmidt, H., Mat. Res. Soc. Symp. Proc. 435, 553558 (1996).10.1557/PROC-435-553Google Scholar
[5] Wang, B., Wilkes, G.L., Pure Appl. Chem. A31, 249 1994.Google Scholar
[6] Kasemann, R., Schmidt, H., In: First European Workshop on Hybrid Organic-Inorganic Materials (Synthesis, Properties, Applications) Chateau de Bierville, France, Novembre 8–10, 171 1993.Google Scholar
[7] Schmidt, H.K., Geiter, E., Mennig, M., Krug, H., Becker, C., Winkler, R.P., J.Sol-Gel Sci. Technol. (1997) in print.Google Scholar
[8] Müller, P., Braune, B., Becker, C., Krug, H., Schmidt, H., SPIE 3136, Sol-Gel Optics IV, 462 (1997).Google Scholar
[9] Jackson, C.L., Bauer, B.J., Nakatami, A.I., Barnes, J.D., Chem.Mater. 8, 727 1996.10.1021/cm950417hGoogle Scholar
[10] Landry, C.J.T., Coltrain, B.K., Brady, B.K., Polymer 33 (7), 1486 (1992).10.1016/0032-3861(92)90126-HGoogle Scholar
[11] Huang, H.H., Wilkes, G.L., Polym. Bull. 18, 455 1987.Google Scholar
[12] Huang, H.H., Orler, B., Wilkes, G.L., Macromolecules 20, 1322 1987.10.1021/ma00172a026Google Scholar
[13] Noell, J.L.W., Wilkes, G.L., Mohanty, D.K., J.Appl.Polym.Sci. 40, 1177 1990.10.1002/app.1990.070400709Google Scholar
[14] Surivet, F., Lam, T.M., Pascault, J.P., Macromolecules 25, 5742 1992.10.1021/ma00047a027Google Scholar
[15] Rodrigues, D.E., Wilkes, G.L., J.Inorg.Organomet.Polym. 3, 197 1993.Google Scholar
[16] Coltrain, B.K., Landry, C.J.T., Oreilly, J.M., Chamberlain, A.M., Rakes, G.A., Sedita, J.S., Kelts, L.W., Landry, M.R., Long, V.K., Chem. Mater. 5 (N°10), 1445 (1993).10.1021/cm00034a014Google Scholar
[17] Landry, C.J.T., Coltrain, B.K., Fitzgerald, J.J., Long, V.K., Macromolecules 26, 3702 1993.10.1021/ma00066a032Google Scholar
[18] Landry, C.J.T., Coltrain, B.K., Wesson, J.A., Zumbulyadis, N., Lippert, J.L., Polymer 33, 1496 1992.10.1016/0032-3861(92)90127-IGoogle Scholar
[19] Shang, S.W., Williams, J.W., Söderholm, K.J.M., J.Mater.Sci. 27, 4949 1992.10.1007/BF01105259Google Scholar
[20] Shang, S.W., Williams, J.W., Stöerholm, K.J.M., J.Mater.Sci. 29, 2406 1994.10.1007/BF00363434Google Scholar
[21] Amiel, C., Sebille, B., J.Colloid Interf.Sci. 149, 481 1992.10.1016/0021-9797(92)90435-OGoogle Scholar
[22] Suzuki, F., Nakane, K., Piao, J.S., J.Mater.Sci. 31, 1335 1996.10.1007/BF00353114Google Scholar
[23] Ahmad, Z., Sarwar, M.I., Mark, J.E., J.Mater.Chem. 7, 259 1997.Google Scholar
[24] Rehman, H.U., Sawar, M.I., Ahmad, Z., Krug, H., Schmidt, H., J.Non-Cryst.Solids 211, 105 1997.10.1016/S0022-3093(96)00614-XGoogle Scholar
[25] Yamada, N., Yoshinaga, I., Katayama, S., J.Mater.Chem. 7(8), 1491 (1997).Google Scholar
[26] Kaddami, H., Surivet, F., Gérard, J.F., Lam, T.M., Pascault, J.P., J.Inorg.Organomet.Polym. 4, 183 1994.10.1007/BF01036542Google Scholar
[27] Wang, B., Wilkes, G.L., Hedrick, J.C., Liptak, S.C., McGrath, J.E., Macromolecules 24, 3449 1991.10.1021/ma00011a063Google Scholar
[28] Kumar, N.D., Ruland, G., Yoshida, M., Lal, M., Bhawalkar, J., Prasad, P.N., Mat.Res.Soc.Symp.Proc 435, 535 1996.10.1557/PROC-435-535Google Scholar
[29] Li, W.H., Hamielec, A.E., Crowe, C.M., Polymer 30, 1513 1989.Google Scholar
[30] Linsebigler, A.L., Lu, G., Yates, J.T., Chem. Rev. 95, 735 1995.10.1021/cr00035a013Google Scholar