Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-09-01T01:17:31.071Z Has data issue: false hasContentIssue false

Targeted Synthesis of Nanostructured Oxide Materials

Published online by Cambridge University Press:  01 February 2011

Greta Ricarda Patzke
Affiliation:
greta.patzke@aci.uzh.ch, University of Zurich, Institute of Inorganic Chemistry, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland, 0041 44 635 4691, 0041 44 635 6802
Ying Zhou
Affiliation:
ying.zhou@aci.uzh.ch, University of Zurich, Institute of Inorganic Chemistry, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
Get access

Abstract

Morphology control is a key challenge in the straightforward hydrothermal production of technologically relevant anisotropic oxide materials. The use of readily available ionic additives as growth modifiers is discussed and compared for molybdenum- and tungsten oxide-based systems, and it is extended upon the formation of ternary W/Mo-oxides. Generally, the one-step hydrothermal synthesis of ternary and higher oxides is an important goal, because their properties often outperform those of the binary oxides. This holds especially for the Bi2O3-MoO3-VOx (BIMOVOx) system as a rich source of new materials. We present a new solution-based approach to α-Bi2O3 nanobelts starting from commercial Bi2O3 and K2SO4 as a key step on the way to anisotropic BIMOVOx-oxides. This hydrothermal process is an illustrative example of highly selective and efficient morphology control through an inorganic additive. As mechanistic and kinetic studies are crucial for the design of complex oxide nanomaterials, the Bi2O3-K2SO4 system is compared to our previous studies on Mo-, W- and V-oxides with respect to its hydrothermal parameter window and robustness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rao, C. N. R., Raveau, B., Transition Metal Oxides (2nd Edition, Wiley-VCH, 1998).Google Scholar
2. Rao, C. N. R., Deepak, F. L, Gundiah, G., Govindaraj, A., Prog. Solid State Chem. 31, 5 (2005).Google Scholar
3. Patzke, G. R, Krumeich, F., Nesper, R., Angew. Chem. Int. Ed. 42, 972 (2003).Google Scholar
4. Kung, H. H, Transition Metal Oxides: Surface Chemistry and Catalysis (Elsevier, Amsterdam, 1989).Google Scholar
5. Weller, M. T, Knee, C. S, J. Mater. Chem. 11, 701 (2001).Google Scholar
6. Boettcher, S. W, Fan, J., Tsung, C.-K., Shi, Q., Stucky, G. D, Acc. Chem. Res. 40, 784 (2007).Google Scholar
7. Wang, Z. L, Ann. Rev. Phys. Chem. 55, 159 (2004).Google Scholar
8. Han, S., Li, C., Liu, Z. Q, Lei, B., Zhang, D. H, Jin, W., Liu, X. L, Tang, T., Zhou, C. W, Nano Lett. 7, 1241 (2004).Google Scholar
9. Komarneni, S., J. Mater. Chem. 12, 1219 (1992).Google Scholar
10. Byrappa, K., Yoshimura, M., Handbook of Hydrothermal Technology (Noyes, !Park Ridge, N.J., 2001).Google Scholar
11. Cushing, B. L, Kolesnichenko, V. L, O'Connor, C. J., Chem. Rev. 104, 3893 (2004).Google Scholar
12. Whittingham, M. S, Guo, J.-D., Chen, R., Chirayil, T., Janauer, G., Zavalij, P., Solid State Ionics 75, 257 (1995).Google Scholar
13. Michailovski, A., Grunwaldt, J.-D., Baiker, A., Kiebach, R., Bensch, W., Patzke, G. R, Angew. Chem. 44, 5643 (2005).Google Scholar
14. Michailovski, A., Krumeich, F., Patzke, G. R, Helv. Chim. Acta 87, 1029 (2004).Google Scholar
15. Michailovski, A., Kiebach, R., Bensch, W., Grunwaldt, J.-D., Baiker, A., Komarneni, S., Patzke, G. R, Chem. Mater. 19, 185 (2007).Google Scholar
16. Michailovski, A., Wörle, M., Sheptyakov, D., Patzke, G. R, J. Mater. Res. 22, 5 (2007).Google Scholar
17. Grunwaldt, J.-D., Ramin, M., Rohr, M., Michailovski, A., Patzke, G. R., Baiker, A., Rev. Sci. Instr. 76, 054104 (2005).Google Scholar
18. Vannier, R. N, Mairesse, G., Abraham, F., Nowogrocki, G., J. Solid State Chem. 122, 394 (1996).Google Scholar
19. Begue, P., Rojo, J. M, Enjalbert, R., Galy, J., Castro, A., Solid State Ionics 112, 275 (1998).Google Scholar
20. Yu, J., Kudo, A., Chem. Lett. 34, 1528 (2005).Google Scholar
21. Beale, A. M, Le, M. T, Hoste, S., Sankar, G., Solid State Sci. 7, 1141 (2005).Google Scholar
22. Rajam, S., Mann, S., J. Chem. Soc. Chem. Commun. 1789 (1990).Google Scholar
23. Garcia, S. P, Semancik, S., Chem. Mater. 19, 4016 (2007).Google Scholar
24. Komarneni, S., Gao, F., Lu, Q. Y, Langmuir 21, 6002 (2005).Google Scholar
25. Welzel, T., Meyer-Zaika, W., Epple, M., Chem. Commun. 1204 (2004).Google Scholar
26. Beale, A. M, Sankar, G., Chem. Mater. 15, 1 (2003).Google Scholar
27. Adamian, A. Z, Adamian, Z. N, Aroutiounian, V. M, Sensors Actuators B 93, 416 (2003).Google Scholar
28. Wu, X., Qin, W., He, W., J. Mol. Catal. A 261, 167 (2007).Google Scholar
29. Jungk, H.-O., Feldmann, C., J. Mater. Sci. 36, 297 (2001).Google Scholar
30. Kumari, L., Lin, J.-H., Ma, Y.-R., J. Phys.: Condens. Matter 19, 406204 (2007).Google Scholar
31. Qiu, Y., Liu, D., Yang, J., Yang, S., Adv. Mater. 18, 2604 (2006).Google Scholar
32. Kim, H. W, Myung, J. H, Shim, S. H, Lee, C., Appl. Phys. A 84, 187 (2006).Google Scholar
33. Gao, F., Lu, Q. Y, Komarneni, S., Chem. Commun. 531 (2005).Google Scholar
34. Gujar, T. P, Shinde, V. R, Lokhande, C. D, Han, S.-H., Mat. Sci. Eng. B 133, 177 (2006).Google Scholar
35. Xiong, Y., Wu, M., Ye, J., Chen, Q., Mater. Lett., on the web.Google Scholar
36. Kiebach, R., Pienack, N., Bensch, W., Grunwaldt, J.-D., Michailovski, A., Baiker, A., Fox, T., Zhou, Y., Patzke, G. R, Chem. Mater., submitted.Google Scholar
37. Reis, K. P, Ramanan, A., Whittingham, M. S, J. Solid State Chem. 96, 31 (1992).Google Scholar
38. Yu, A., Kumagai, N., Liu, Z., Lee, Y., J. Solid State Electrochem. 2, 394 (1998).Google Scholar
39. G. Chévrier, Touboul, M., Driouiche, A., Figlarz, M., J. Mater. Chem. 2, 639 (1992).Google Scholar
40. Ovsitser, O., Uchida, Y., Mestl, G., Weinberg, G., Blume, A., Jäger, J., Dieterle, M., Hibst, H., Schlögl, R., J. Mol. Catal. A 185, 291 (2002).Google Scholar
41. Ivanova, T., Gesheva, K. A, Popkirov, G., Ganchev, M., Tzvetkova, E., Mater. Sci. Eng. B 119, 232 (2005).Google Scholar
42. Yu, J. C, Xu, A., Zhang, L., Song, R., Wu, L., J. Phys. Chem. B 108, 64 (2004).Google Scholar
43. Mann, S., J. Mater. Chem. 5, 935 (1995).Google Scholar