Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-11T22:23:12.347Z Has data issue: false hasContentIssue false

Tem/Hrem Analysis of Defects in GaN Epitaxial Layers Grown by MOVPE on SiC and Sapphire

Published online by Cambridge University Press:  10 February 2011

S. Ruvimov
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Z. Liliental-Weber
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720
C. Dieker
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720
J. Washburn
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720
M. Koike
Affiliation:
Toyoda Gosei Co LTD, New Market Technical Division, Haruhi-cho Nishikasugai-gun, Aichi 452, Japan
H. Amano
Affiliation:
Meijo University, Tempakuku-ku, Nagoya 468, Japan
I. Akasaki
Affiliation:
Meijo University, Tempakuku-ku, Nagoya 468, Japan
Get access

Abstract

High resolution electron microscopy has been applied to study the structure of epitaxial GaN layers grown by MOVPE on SiC and sapphire substrates. Defects in GaN were systematically studied for undoped, and Si- and Mg-doped samples. For both substrates, the Si-doping was found to decrease the dislocation density at the layer surface, while Mg-doping increased it. The density of nanopipes increased with both types of doping. Cracking of GaN layers was observed for SiC substrates. Crack formation was not detected in layers grown on sapphire. Mechanisms of defect generation are discussed in relation to the initial growth stages, the effect of doping, and the type of substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Amano, H., Kito, M., Hiramatsu, X., and Akasaki, I., Jpn. J. Appl. Phys. 28, L2112 (1989).Google Scholar
2. Nakamura, S., Mukai, T., and Senoh, M., Jpn. J. Appl. Phys. 30, L1998 (1991).Google Scholar
3. Mohammad, S.N., Salvador, A., and Morkoç, H., Proc. IEEE 83, 1306 (1995).Google Scholar
4. Qian, W., Rohrer, G.S., Skowronski, M., Doverspike, K., Rowland, L.B., and Gaskill, D.K., Appl. Phys. Lett. 67, 2284 (1995).Google Scholar
5. Liliental-Weber, Z., Sohn, H., Newman, N., and Washburn, J., J. Vac. Sci. Technol B 13, 1578 (1995).Google Scholar
6. Qian, W., Skowronski, M., and Rohrer, G.S., Mat. Res. Soc. Symp. Proc., vol. 423, 475 (1996).Google Scholar
7. Ponce, F.A., Bour, D.P., Götz, W., and Wright, P.J., Appl. Phys. Lett. 68, 57, (1996).Google Scholar
8. Ruvimov, S., Liliental-Weber, Z., Suski, T., Ager, J.W., Washburn, J., Krueger, J., Kisielowski, C., Weber, E.R., Amano, H., and Akasaki, I., Appl. Phys. Lett. 69, 1454 (1996).Google Scholar
9. Akasaki, I., et al. J. Crystal Growth 98 (1989) 209 Google Scholar
10. Liliental-Weber, Z., Ruvimov, S., Kisielowski, C., Chen, Y., Swider, W., Washburn, J., Newmann, N., Gassmann, A., Liu, X., Schloss, L., Weber, E.R., Grzegory, I., Bockowski, M., Jun, J., Suski, T., Pakula, K., Baranowski, J., Porowski, S., Amano, H., and Akasaki, I., MRS Proc. v.395, 351 (1996)Google Scholar
11. Liliental-Weber, Z., Ruvimov, S., Suski, T., Ager, J.w. III, Swider, W., Washburn, J., Amano, H., Akasaki, I., Imler, W., Mat. Res. Soc. Symp. Proc., vol. 423, 487 (1996).Google Scholar
12. Hull, D. and Bacon, D.J., Introduction to Dislocations, Pegamon Press, 1984 Google Scholar
13. Liliental-Weber, Z., Ruvimov, S., Chen, Y., Swider, W. and Washburn, J., MRS, v.449, to be publishedGoogle Scholar