Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-23T15:36:54.090Z Has data issue: false hasContentIssue false

Temperature Dependence of Cluster-cluster Coalescence in Monodispersed Co Cluster Assemblies

Published online by Cambridge University Press:  21 March 2011

D. L. Peng
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
T. Hihara
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
K. Sumiyama
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
Get access

Abstract

Using a plasma-gas-condensation-type cluster beam deposition system, we deposited monodispersed Co clusters with mean diameter d = 8.5 nm on quartz and microgrid substrates. The cluster-cluster coalescence process of the Co cluster assemblies was investigated by in situ electrical conductivity measurements and ex situ transmission electron microscopy (TEM). The change of magnetic properties induced by the inter-cluster coalescence was also discussed. The electrical conductivity measurement indicated that, at temperatures T < 100°C, the Co clusters in the assemblies maintain their original size as deposited at room temperature, while the inter-cluster coalescence takes place at T > 100°C. The TEM observation showed that the size distribution and the interface morphology of the clusters do not change markedly at substrate temperatures Ts ≤ 200°C, while cluster-cluster coalescence starts at Ts > 200°C. Above Ts = 300°C, the interfacial area of coalesced clusters is crystalline, having its own orientation different from those of two connected cluster cores.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Melinon, P. et al., Int. J. Mod. Phys. B 9, 339 (1995).Google Scholar
2. Perez, A. et al., J. Phys. D: Appl. Phys. 30, 709 (1997).Google Scholar
3. Yamamuro, S., Sumiyama, K., and Suzuki, K., J. Appl. Phys. 85, 483 (1999).Google Scholar
4. Yamamuro, S., Sumiyama, K., Hihara, T., and Suzuki, K., J. Phys.: Condens. Matter 11, 3247 (1999).Google Scholar
5. Yamamuro, S., Sumiyama, K., Kamiyama, T. and Suzuki, K., J. Appl. Phys., 86, 5726 (1999).Google Scholar
6. Peng, D. L., Sumiyama, K., Yamamuro, S., Hihara, T., and Konno, T. J., Appl. Phys. Lett. 74, 76 (1999); Phys. Rev. B 60, 2093 (1999).Google Scholar
7. Peng, D. L., Sumiyama, K., Hihara, T., and Yamamuro, S., Appl. Phys. Lett., 75, 3856 (1999).Google Scholar
8. Jensen, P., Rev. Mod. Phys. 71, 1695 (1999).Google Scholar
9. Yu, X. and Duxbury, P. M., Phys. Rev. B 52, 2102 (1995).Google Scholar
10. Zhu, H. and Averback, R. S., Philos. Mag. Lett. 73, 27 (1996).Google Scholar
11. Lewis, L., Jensen, P. and Barrat, J-L., Phys. Rev. B 56, 2248 (1997).Google Scholar
12. Haberland, H., Karrais, M., Mall, M. and Thurner, Y., J. Vac. Sci. Technol., A 10, 3266 (1992).Google Scholar
13. Buffat, Ph. and Borel, J. -P., Phys. Rev. A 13, 2287 (1976).Google Scholar
14. Chien, C. L., J. Appl. Phys., 69, 5267 (1991).Google Scholar
15. Respaud, M., Broto, J. M., Fert, A. R., Thomas, L., Barbara, B., Verelst, M., Snoeck, E., Mosset, A., Osuna, J., Ould Ely, T., Amiens, C. and Chaudret, B., Phys. Rev., B 57, 2925 (1998).Google Scholar