Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-16T11:19:29.092Z Has data issue: false hasContentIssue false

Temperature Dependence of the Kinetics of Silicon Amorphization by He Ion Implantation

Published online by Cambridge University Press:  25 February 2011

L. Laânab
Affiliation:
CEMES-LOE/CNRS, BP 4347, 31055 Toulouse Cedex, France
A. Roumili
Affiliation:
CEMES-LOE/CNRS, BP 4347, 31055 Toulouse Cedex, France
M. M. Faye
Affiliation:
CEMES-LOE/CNRS, BP 4347, 31055 Toulouse Cedex, France
N. Gessinn
Affiliation:
CEMES-LOE/CNRS, BP 4347, 31055 Toulouse Cedex, France
A. Claverie
Affiliation:
CEMES-LOE/CNRS, BP 4347, 31055 Toulouse Cedex, France
Get access

Abstract

We have studied by XTEM the kinetics of Si amorphization by light ion implantation (He) as a function of substrate temperature. The analysis of these kinetics has been performed within the framework of the “Critical Damage Energy Density” model which is shown to apply for temperatures up to 250 K. There is a drastic change in the efficiency of the amorphization process at about 175 K. These results are discussed and explained by considering the different types of defects (I, V, I2, V2, complexes…) that can be stabilized in c-Si depending on the temperature. Above 150 K, the amorphization proceeds through the accumulation of interstitials and vacancies while at higher temperature it proceeds through the accumulation of di-interstitials and di-vacancies left in the network after annihilation and recombination of the Frenkel pairs created by the bombardment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Jones, K. S., Sadana, D. K., Prussin, S., Washbum, J., Weber, E. R. and Hamilton, W. J., J. Appl Phys., 63(5), 1414(1988).CrossRefGoogle Scholar
2) Claverie, A., Roumili, A., Gessinn, N. and Beauvillain, J., Mater. Res. Soc., Vol. 201, 369(1991).CrossRefGoogle Scholar
3) Motooka, T., Kobayashi, F., Fons, P., Tokuyama, T., Suzuki, T. and Natsuaki, N., J. J. Appl Phys. 30, 12B, 3617(1991).CrossRefGoogle Scholar
4) Claverie, A., Vieu, C., Fauré, J. and Beauvillain, J., Mater. Sci. Eng., B2, 99(1989).CrossRefGoogle Scholar
5) Brinkman, J. A., Amer. J. Phys., 24, 246(1956).CrossRefGoogle Scholar
6) Corbett, J. W., Karins, J. P. and Tan, T. Y., Nucl. Instrum. Methods, 182–183, 457(1981).CrossRefGoogle Scholar
7) Vook, F. L. and Stein, H. J., Proc. 1st Int. Conf. on Ion Implantation, edited by Chadderton, L. T. and Eisen, F. H. (Gordon and Breach, London), 9(1971).Google Scholar
8) Narayan, J., Fathy, D., Oen, O. S. and Holland, O. W., J. Vac. Sci. Technol., A2, 1303(1984).CrossRefGoogle Scholar
9) Claverie, A., Vieu, C., Fauré, J. and Beauvillain, J., J. Appl Phys., 64(9), 4415(1988).CrossRefGoogle Scholar
10) Shih, Y., Washbum, J., Gronsky, R. and Weber, E. R., Mat. Res. Soc. Symp. Proc., Vol. 71, 203(1986).CrossRefGoogle Scholar
11) Claverie, A., Roumili, A., Gessinn, N. and Beauvillain, J., Mater. Sci. Eng., B4, 205(1989).CrossRefGoogle Scholar
12) Vieu, C., Claverie, A., Fauré, J. and Beauvillain, J., Nucl. Instrum. and Methods, B36, 137 (1989).CrossRefGoogle Scholar
13) A. Claverie et al., unpublished.Google Scholar