Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T13:25:42.373Z Has data issue: false hasContentIssue false

Temperature Dependence of the Reversible and Irreversible Polarization Contributions in Ferroelectric Thin Films

Published online by Cambridge University Press:  10 February 2011

D. Bolten
Affiliation:
IWE II, RWTH Aachen University of Technology, D-52056Germany
U. Böttger
Affiliation:
IWE II, RWTH Aachen University of Technology, D-52056Germany
M. Grossmann
Affiliation:
IWE II, RWTH Aachen University of Technology, D-52056Germany
O. Lohse
Affiliation:
IWE II, RWTH Aachen University of Technology, D-52056Germany
R. Waser
Affiliation:
IWE II, RWTH Aachen University of Technology, D-52056Germany IFF, Research Center Juelich, Germany
M. Kastnert
Affiliation:
Infineon Technologies AG, Memory Products, MP TD Fe, Munich, Germany
G. Schindlert
Affiliation:
Infineon Technologies AG, Memory Products, MP TD Fe, Munich, Germany
C. Dehmo
Affiliation:
Infineon Technologies AG, Memory Products, MP TD Fe, Munich, Germany
Get access

Abstract

In this paper the temperature dependence of reversible and irreversible polarization contributions in the temperature range between 223 K and 473 K is investigated to elucidate the microscopic mechanism responsible for reversible and irreversible changes of the ferroelectric polarization. Small signal capacitance measurements under dc-bias are used to measure the reversible contributions. Quasi-static hysteresis measurements are used to obtain the total polarization, i.e. the sum of the reversible and irreversible contributions. The combination of both measurements allows the separation of the reversible and irreversible parts. The reversible and irreversible contributions are demonstrated for SrBi2Ta2O9 (SBT), SrBi2Ta2-xNbxO9 (SBTN) thin films and compared to tetragonal PbZr0.3Ti0.7O3 (PZT) thin film capacitors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Araujo, C. A., Cuchiaro, J. D., McMillan, L. D., Scott, M. C. and Scott, J. F., Nature 374, 627(1995)Google Scholar
[2] Scott, J. F. and Araujo, C. A., Science 246, 1400(1989)Google Scholar
[3] Sumi, T., Moriwaki, N., Nakane, G., Nakakuma, T., Judai, Y., Uemoto, Y., Nagano, Y., Hayashi, S., Azuma, M., Fujii, E., Katsu, S. I., Otsuki, T., McMillan, L., Araujo, C. Paz de, Kano, G., IEEE ISSCC. Dig. Of Tech. Pap., p. 268 (1994)Google Scholar
[4] Träuble, H., in Moderne Probleme der Metallphysik, edited by Seeger, A. (Springer, Berlin, 1966), p. 157 Google Scholar
[5] Chikazumi, S., Charap, S. H., Physics of Magnetism (John Wiley & Sons, New York, 1964), p. 243 Google Scholar
[6] Kronmüller, H., Z. Angew. Phys. 30, 9 (1970)Google Scholar
[7] Damjanovic, D., J. Appl. Phys. 82, 1788 (1997)Google Scholar
[8] Taylor, D. V., Damjanovic, D., J. Appl. Phys. 82 (4), 1973 (1997)Google Scholar
[9] Lohse, O., Bolten, D., Grossmann, M., Waser, R., Hartner, W., and Schindler, G. in Ferroelectric Thin Films VI, edited by Treece, R. D., Jones, R. E., Foster, C. M., Desu, S. B., and Yoo, I. K.. (Mater. Res. Soc. Proc. 493, Warrendale, PA, 1998) pp. 267278 Google Scholar
[10] Bolten, D., Lohse, O., Grossmann, M., Waser, R., Ferroelectrics 221, 251 (1999)Google Scholar