Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-13T12:49:43.874Z Has data issue: false hasContentIssue false

Theory of Photoemission in Actinides

Published online by Cambridge University Press:  01 February 2011

Axel Svane*
Affiliation:
svane@phys.au.dk, University of Aarhus, Department of Physics and Astronomy, Ny Munkegade, bygn. 1520, Aarhus C, DK 8000, Denmark, +45 8942 3678, +45 8612 0740
Get access

Abstract

A theory is presented which describes the photoemission spectra of actinide compounds starting from the atomic limit of isolated actinide ions. The multiplets of the ion are calculated and an additional term is introduced to describe the interaction with the sea of conduction electrons. This leads to complex mixed-valent ground states, which describes well the rich spectrum observed for PuSe. In particular, the three-peak feature, which is often seen in Pu and Pu compounds in the vicinity of the Fermi level originates from f6 → f5 emission. The theory is further applied to PuSb, PuCoGa5 and Am.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gouder, T. Wastin, F. Rebizant, J. and Havela, L. Phys. Rev. Lett. 84, 3378 (2000); L. Havela, F. Wastin, J. Rebizant, and T. Gouder, Phys. Rev. B 68, 85101 (2003).Google Scholar
2 Joyce, J. J. Wills, J. M. Durakiewicz, T. Butterfield, M. T. Guziewicz, E. Sarrao, J. L. Morales, L. A., Arko, A. J. and Eriksson, O. Phys. Rev. Lett. 91, 176401 (2003).Google Scholar
3 Durakiewicz, T. Joyce, J. J. Lander, G. H. Olson, C. G. Butterfield, M. T. Guziewicz, E. Arko, A. J., Morales, L. Rebizant, J. Mattenberger, K. and Vogt, O. Phys. Rev. B 70, 205103 (2004).Google Scholar
4 Naegele, J. R. Manes, L. Spirlet, J. C. and Müller, W., Phys. Rev. Lett. 52, 1834 (1984).10.1103/PhysRevLett.52.1834Google Scholar
5 Petit, L. Svane, A. Szotek, Z. and Temmerman, W.M. Science 301, 498 (2003).Google Scholar
6 Wills, J. M. Eriksson, O. Delin, A. Andersson, P. H. Joyce, J. J. Durakiewicz, T. Butterfield, M. T., Arko, A. J. Moore, D. P. and Morales, L. A. J. Electr. Spectr. and Rel. Phenom., 135, 163 (2004).Google Scholar
7 Korzhavyi, P. A. Vitos, L. Andersson, D. A. and Johansson, B. Nature Mater. 3, 225 (2004).Google Scholar
8 Shick, A. B. Janis, V. and Oppeneer, P. M. Phys. Rev. Lett. 94, 16401 (2005).10.1103/PhysRevLett.94.016401Google Scholar
9 Petit, L. Svane, A. Temmerman, W. M. and Szotek, Z. Solid State Commun. 116, 379 (2000).Google Scholar
10 Petit, L. Svane, A. Temmerman, W. M. and Szotek, Z. Phys. Rev. B 63, 165107 (2001); Eur. Phys. J. B 25, 139 (2002).Google Scholar
11 Svane, A. Petit, L. Szotek, Z. and Temmerman, W. M. Phys. Rev. B 76, 115116 (2007).Google Scholar
12 Svane, A. Solid State Commun. 140, 364 (2006).10.1016/j.ssc.2006.08.049Google Scholar
13 Lichtenstein, A. I. and Katsnelson, M. I. Phys. Rev. B 57 6884 (1998).Google Scholar
14 Shick, A. Kolorenc, J. Havela, L. Drchal, V. and Gouder, T. EPL 77, 17003 (2007); J.-X. Zhu, A. K. McMahan, M. D. Jones, T. Durakiewicz, J. J. Joyce, J. M. Wills and R. C. Albers, Phys. Rev. B 76, 245118 (2007).Google Scholar
15 Wachter, P. Solid State Commun. 127, 599 (2003).Google Scholar
16 Lebegue, S. Svane, A. Katsnelson, M. I. Lichtenstein, A. I. and Eriksson, O. Phys. Rev. B 74, 045114 (2006); J.Phys.: Condens. Matter 18, 6329 (2006).Google Scholar
17 Savrasov, S. Y. Haule, K. and Kotliar, G. Phys. Rev. Lett. 96, 036404 (2006); J. H. Shim, K. Haule and G. Kotliar, Nature, 446, 513 (2007).Google Scholar