Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-07T16:13:02.203Z Has data issue: false hasContentIssue false

Theory of Scanning Probe Microscopy of Carbon Nanostructures

Published online by Cambridge University Press:  01 February 2011

Vincent Meunier
Affiliation:
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6367, U.S.A.
Sergei Kalinin
Affiliation:
Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A.
Philippe Lambin
Affiliation:
Department of Physics, Facultés Universitaires Notre-Dame de la Paix, Namur, B-5000, Belgium
Get access

Abstract

Experimental techniques for SPM imaging and spectroscopy of low-dimensional systems have significantly progressed in recent years. At the same time, new simulation methods and computational techniques have allowed the development of a theoretical basis to the interpretation and understanding of the measurements. In this contribution, we concisely review two state-of-the-art modeling methods for scanning probe microscopy, as applied to carbon nanostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S., Nature 354, 56 (1991).Google Scholar
2. Hamada, N., Sawada, S., and Oshiyama, A., Physical Review Letters 68, 1579 (1992).Google Scholar
3. Mintmire, J. W., Dunlap, B. I., and White, C. T., Physical Review Letters 68, 631 (1992).Google Scholar
4. Ajayan, P. M., Ravikumar, V., and Charlier, J. C., Physical Review Letters 81, 1437 (1998).Google Scholar
5. Yakobson, B. I., Brabec, C. J., and Bernholc, J., Physical Review Letters 76, 2511 (1996).Google Scholar
6. Orlikowski, D., Nardelli, M. B., Bernholc, J., and Roland, C., Physical Review Letters 83, 4132 (1999).Google Scholar
7. Odom, T. W., Huang, J. L., and Lieber, C. M., Journal of Physics-Condensed Matter 14, R145 (2002).Google Scholar
8. Meunier, V., Shin, J., Baddorf, A., and Kalinin, S. V., Physical Review Letters 93, 246801 (2004).Google Scholar
9. Lambin, P., Meunier, V., Henrard, L., and Lucas, A. A., Carbon 38, 1713 (2000).Google Scholar
10. Clauss, W., Bergeron, D. J., and Johnson, A. T., Physical Review B 58, R4266 (1998).Google Scholar
11. Meunier, V. and Lambin, P., Physical Review Letters 81, 5588 (1998).Google Scholar
12. Ge, M. H. and Sattler, K., Chemical Physics Letters 220, 192 (1994).Google Scholar
13. Venema, L. C., Meunier, V., Lambin, P., and Dekker, C., Physical Review B 61, 2991 (2000).Google Scholar
14. Clauss, W., Bergeron, D. J., Freitag, M., Kane, C. L., Mele, E. J., and Johnson, A. T., Europhysics Letters 47, 601 (1999).Google Scholar
15. Kane, C. L. and Mele, E. J., Physical Review B 59, R12759 (1999).Google Scholar
16. Mark, G. I., Biro, L. P., and Gyulai, J., Physical Review B 58, 12645 (1998).Google Scholar
17. Mark, G. I., Biro, L. P., Gyulai, J., Thiry, P. A., Lucas, A. A., and Lambin, P., Physical Review B 62, 2797 (2000).Google Scholar
18. Rubio, A., Sanchez-Portal, D., Artacho, E., Ordejon, P., and Soler, J. M., Physical Review Letters 82, 3520 (1999).Google Scholar
19. Rubio, A., Applied Physics a-Materials Science & Processing 68, 275 (1999).Google Scholar
20. Tsukada, M. and Shima, N., Journal of the Physical Society of Japan 56, 2875 (1987).Google Scholar
21. Meunier, V., Senet, P., and Lambin, P., Physical Review B 60, 7792 (1999).Google Scholar
22. Orlikowski, D., Nardelli, M. B., Bernholc, J., and Roland, C., Physical Review B 61, 14194 (2000).Google Scholar
23. Meunier, V. and Lambin, P., Carbon 38, 1729 (2000).Google Scholar
24. Lambin, P., Meunier, V., and Rubio, A., Physical Review B 62, 5129 (2000).Google Scholar
25. Odom, T. W., Huang, J. L., Kim, P., and Lieber, C. M., Nature 391, 62 (1998).Google Scholar
26. Wildoer, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E., and Dekker, C., Nature 391, 59 (1998).Google Scholar
27. Ouyang, M., Huang, J. L., Cheung, C. L., and Lieber, C. M., Science 292, 702 (2001).Google Scholar
28. Kim, P., Odom, T. W., Huang, J. L., and Lieber, C. M., Carbon 38, 1741 (2000).Google Scholar
29. Wirth, I., Eisebitt, S., Kann, G., and Eberhardt, W., Physical Review B 61, 5719 (2000).Google Scholar
30. Charlier, J. C. and Lambin, P., Physical Review B 57, R15037 (1998).Google Scholar
31. White, C. T. and Mintmire, J. W., Nature 394, 29 (1998).Google Scholar
32. Kim, P., Odom, T. W., Huang, J. L., and Lieber, C. M., Physical Review Letters 82, 1225 (1999).Google Scholar
33. Tans, S. J. and Dekker, C., Nature 404, 834 (2000).Google Scholar
34. Kalinin, S. V. and Bonnell, D. A., Applied Physics Letters 78, 1306 (2001).Google Scholar
35. Freitag, M., Johnson, A. T., Kalinin, S. V., and Bonnell, D. A., Physical Review Letters 8921, 6801 (2002).Google Scholar