Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-20T23:18:52.807Z Has data issue: false hasContentIssue false

Thermal and Radiation Stability of Nanomaterials

Published online by Cambridge University Press:  10 March 2014

Rostislav A. Andrievski*
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences 1 Semenov Prospect, Chernogolovka, Moscow Region, 142432, Russia
Get access

Abstract

The kinetic/thermodynamic stabilization recent results of grain growth in nanomaterials (NMs)-based metals, alloys, and compounds are generalized. Due to their large share of interfaces which can act as the sinks for radiation defects, NMs show improved irradiation resistance such as the resistance to amorphization, hardening and swelling. Radiation defects will tend also to the nanostructure annihilation and transformation into amorphous state. Some unsolved problems are emphasized.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrievski, R. A., J. Mater. Sci. 38, 1367 (2003).CrossRefGoogle Scholar
С. С., Koch, Ovid’ko, I. A., Seal, S. and Veprek, S., “Structural nanocrystalline materials: fundamentals and applications” (Cambridge University Press, 2007) pp. 93–133.CrossRefGoogle Scholar
Koch, C. C., J. Mater. Sci. 42, 1403 (2007).CrossRefGoogle Scholar
Misra, A. and Thilly, L., MRS Bull. 35, 965 (2010).Google Scholar
Andrievski, R. A., Rev. Adv. Mater. Sci. 29, 54 (2011).Google Scholar
Weertman, J. R., Science 327, 921 (2012).CrossRefGoogle Scholar
Castro, R. H. R., Mater. Lett. 96, 45 (2013).CrossRefGoogle Scholar
Andrievski, R. A., J. Mater. Sci. 49, 1449 (2014).CrossRefGoogle Scholar
Chookajorn, T., Murdoch, H. A., Schuh, C. A., Science 337,951 (2012).CrossRefGoogle Scholar
Murdoch, H. A., Schuh, C. A., Acta Mater. 61, 2121 (2013).CrossRefGoogle Scholar
Saber, M., Katan, H., Koch, C. C. and Scattergood, R. O., J. Appl. Phys. 113, 063515 (2013).CrossRefGoogle Scholar
Darling, K. A. et al. ., Mater. Sci. Eng. A 527, 3572 (2010).CrossRefGoogle Scholar
Darling, K. A. et al. ., Mater. Sci. Eng. A 528, 4365 (2011).CrossRefGoogle Scholar
Atwater, M. A., Scattergood, R. O., Koch, C. C., Mater. Sci. Eng. A 559, 250 (2013).CrossRefGoogle Scholar
Detor, A. J., Schuh, C. A., Acta Mater. 55, 371 (2007).CrossRefGoogle Scholar
Detor, A. J., Schuh, C. A., Acta Mater. 55, 4221 (2007).CrossRefGoogle Scholar
Detor, A. J. and Schuh, C. A., J. Mater. Res. 22, 3233 (2007).CrossRefGoogle Scholar
Koch, C. C., Scattergood, R. O., Saber, M., and Kotan, H., J. Mater. Res. 28, 1785 (2013).CrossRefGoogle Scholar
Zhang, R. F., Veprek, S., Thin Solid Films 516, 2264 (2008).CrossRefGoogle Scholar
Sheng, S. H., Veprek, S., Acta Mater. 59, 297 (2011).CrossRefGoogle Scholar
Sheng, S. H., Zhang, R. F., Veprek, S., Acta Mater. 59, 3498 (2011).CrossRefGoogle Scholar
Ivashchenko, V. I. et al. ., Phys. Rev. B 85, 195403 (2012).CrossRefGoogle Scholar
Ivashchenko, V. I. et al. ., Phys. Rev. B 86, 014110 (2012).CrossRefGoogle Scholar
Gottstein, G., Shvindlerman, L. S. and Zhao, B., Scr. Mater. 62, 914 (2010).CrossRefGoogle Scholar
Ames, M. et al. ., Acta Mater. 56, 4255 (2008).CrossRefGoogle Scholar
Novikov, V. Yu., Mater. Lett. 68, 413 (2012).CrossRefGoogle Scholar
Novikov, V. Yu., Mater. Lett. 100, 271 (2013).CrossRefGoogle Scholar
Rose, M., Balogh, A.G. and Hahn, H., Nucl. Instr. Meth. Phys. Res. B 127/128, 119 (1997).CrossRefGoogle Scholar
Shen, T.D. et al. ., Appl. Phys. Lett. 90, 263115 (2007).CrossRefGoogle Scholar
Kilmametov, A.R. et al. ., Scr. Mater. 59, 1027 (2008).CrossRefGoogle Scholar
Leconte, Y. et al. . in Structural and Refractory Materials for Fusion and Fission Technologies, edited by Actaa, J. et al. . (Mater. Res. Soc. Proc. 981, Warrendale, PA, 2007) p. JJ0711.Google Scholar
Kurushita, H. et al. ., J. Nucl. Mater. 377, 34 (2008).CrossRefGoogle Scholar
McClintock, D. A., Hoezler, D. T., A Sokolov, M., Nanstad, R. K., J. Nucl. Mater. 386-388, 307 (2009).CrossRefGoogle Scholar
Etienne, A. et al. ., Ultramicroscopy 111, 659 (2011).CrossRefGoogle Scholar
Demkowicz, M., Bellon, P., and Wirth, B. D., MRS Bull. 35, 992 (2010).CrossRefGoogle Scholar
Fu, E. et al. ., J. Nucl. Mater. 407, 178 (2010).CrossRefGoogle Scholar
Fu, E. et al. ., Phil. Mag. 93, 883 (2013).CrossRefGoogle Scholar
Kaoumi, D., Motta, A. T., and Birtchner, R. C., J. Appl. Phys. 104, 073525 (2008).CrossRefGoogle Scholar
Meldrum, A., Boatner, L.A. and Ewing, R.C., Phys. Rev. Lett. 88, 025503 (2002).CrossRefGoogle Scholar
Sickafus, K. E. et al. ., J. Nucl. Mater. 274, 66 (1999).CrossRefGoogle Scholar
Johannessen, B. et al. ., Appl. Phys. Lett. 90, 073119 (2007).CrossRefGoogle Scholar
Johannessen, B. et al. ., Phys. Rev. B 76, 184203 (2007).CrossRefGoogle Scholar
Kluth, P. et al. ., Phys. Rev. B 74, 014202 (2006).CrossRefGoogle Scholar
Ridgway, M.C. et al. ., Phys. Rev. B 71, 094107 (2005).CrossRefGoogle Scholar
Djurabekova, F. et al. ., Nucl. Instr. Meth. Phys. Res. B 267, 1235 (2009).CrossRefGoogle Scholar
Sprouster, D. J. et al. ., Phys. Rev. B 81, 155414 (2010).CrossRefGoogle Scholar
Krasheninnikov, A. V. and Nordlund, K., Appl. Phys. Rev. 107, 071301 (2010).CrossRefGoogle Scholar
Ovid’ko, I. A. and Sheinerman, A. G., Appl. Phys. A 81, 1083 (2005).CrossRefGoogle Scholar
Shen, T. D., Nucl. Instr. Meth. Phys. Res. B 266, 921 (2008).CrossRefGoogle Scholar
Oksengendler, B. L. et al. ., J. Exp. Theor. Phys. 111, 425 (2010) (English transl.).CrossRefGoogle Scholar
Bai, X.- M. et al. ., Science 327, 1631 (2010).CrossRefGoogle Scholar
Bai, X.- M and Uberuaga, B. P., Phil. Mag. 92, 14 (2012).CrossRefGoogle Scholar
Ishimaru, M. et al. ., Appl. Phys. Lett. 103, 033104 (2013).CrossRefGoogle Scholar