Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-22T02:15:03.371Z Has data issue: false hasContentIssue false

Thermal Conductivity Of Bi/Sb Superlattice

Published online by Cambridge University Press:  01 February 2011

D. W. Song
Affiliation:
Mechanical and Aerospace Engineering Department, University of California at Los Angeles, Los Angeles, CA 90025
G. Chen
Affiliation:
Mechanical and Aerospace Engineering Department, University of California at Los Angeles, Los Angeles, CA 90025
S. Cho
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
Y. Kim
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
J. B. Ketterson
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
Get access

Abstract

The temperature-dependent cross-plane thermal conductivity of a 1-μm thick 50Å Bi / 50Å Sb superlattice on a (111) CdTe substrate was measured, using a differential 3-ω method. This method uses the temperature difference between the superlattice sample and a reference sample to calculate its cross-plane thermal conductivity. However, the substrate thermal conductivity is comparable to or smaller than the superlattice thermal conductivity near room temperature. This results in a very small or negative temperature difference, making the existing data reduction method inapplicable. Based on an improved model, the temperature-dependent thermal conductivity of the Bi/Sb superlattice is obtained and is about half of the literature value of Bi0.5Sb0.5 bulk alloy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gelhlhoff, G. and Neumeier, F., Verhandl. Deut. Physik. Ges., 15, 876, 1069 (1913).Google Scholar
2. White, W. C., Elec. Eng., 70, 589 (1951).Google Scholar
3. Telkes, M., J. Appl. Phys. 25, 765 (1954).Google Scholar
4. Jain, A. L., Phys. Rev., 114, 1518 (1959).Google Scholar
5. Tanuma, S., J. Phys. Soc. Japan, 14, 1246 (1959).Google Scholar
6. Smith, G. E. and Wolfe, R., J. Appl. Phys., 33, 841 (1962).Google Scholar
7. Wolfe, R. and Smith, G. E., Appl. Phys. Lett., 1, 5 (1962).Google Scholar
8. Cuff, K. F., Horst, R. B., Weaver, J. L., Hawkins, S. R., Kooi, C. F., and Enslow, G. M., Appl. Phys. Lett., 2, 145 (1963).Google Scholar
9. Yim, Y. M. and Amith, A., Solid State Electron. 15, 1141 (1972).Google Scholar
10. Cho, S., Vurgaftman, I., Shick, A. B., DiVenere, A., Kim, Y., Youn, S. J., Hoffman, C. A., Wong, G. K. L., Freeman, A. J., Meyer, J. R., and Ketterson, J. B., Mat. Res. Soc. Symp. Proc. 545, 283 (1999).Google Scholar
11. Yao, T., Appl. Phys. Lett., 51, 1798 (1987).Google Scholar
12. Chen, G., Tien, C. L., Wu, X., and Smith, J. S., J. Heat Transfer, 116, 325 (1994).Google Scholar
13. Capinski, W. S. and Maris, H. J., Physica B, 219, 699, (1996).Google Scholar
14. Yu, X. Y., Chen, G., Verma, A., and Smith, J. S., Appl. Phys. Lett., 67, 3554 and 68, 1303 (1995)Google Scholar
15. Lee, S.-M., Cahill, D. G., and Venkatasubramanian, R., Appl. Phys. Lett., 70, 2957 (1997).Google Scholar
16. Venkatasubramanian, R., Naval Res. Rev., 58, 44 (1996).Google Scholar
17. Song, D.W., Caylor, C., Liu, W.L., Zeng, T., Borca-Tasciuc, T., Sands, T.D., and Chen, G., Proc. 18th Int. Conf. Thermoelectrics, 679 (1999).Google Scholar
18. Cho, S., DiVenere, A., Wong, G. K., Ketterson, J. B., and Meyer, J. R., J. Vac. Sci. Technol. A (in press).Google Scholar
19. Cahill, D. G., Rev. Sci. Instrum., 61, 802 (1990).Google Scholar
20. Toulokian, Y. S., Thermophysical Properties of Matter, IFI/Plenum, New York, NY, 1, 1267 (1979).Google Scholar
21. Toulokian, Y. S., Thermophysical Properties of Matter, IFI/Plenum, New York, NY, 1, 25 (1979).Google Scholar
22. Toulokian, Y. S., Thermophysical Properties of Matter, IFI/Plenum, New York, NY, 1, 10 (1979).Google Scholar
23. Chen, G., Zhou, S. Q., Yao, D.-Y., Kim, C. J., Zheng, X. Y., Liu, Z. L., and Wang, K. L., Proc. 17th Int. Conf. Thermoelectrics, 1 (1998).Google Scholar
24. Borca-Tasciuc, T. et al., unpublished.Google Scholar
25. Toulokian, Y. S., et al., unpublished. 1, 502.Google Scholar