Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-22T21:35:23.001Z Has data issue: false hasContentIssue false

Thermal Expansion Of GaN And Ain

Published online by Cambridge University Press:  10 February 2011

Kai Wang
Affiliation:
Department of Materials Science and Engineering, North Carolina State University Raleigh, NC 27695–7907
Robert R. Reeber
Affiliation:
Department of Materials Science and Engineering, North Carolina State University Raleigh, NC 27695–7907
Get access

Abstract

The temperature dependence of the thermal expansion and the bulk modulus are critical for predicting the residual stress distribution in epitaxial films and provides information relevant for interatomic potentials and equations of state. The thermal expansions of aluminum nitride (AIN) and gallium nitride (GaN) are calculated with two models that employ the limited elastic and lattice parameter data. These semiempirical models allow prediction of the thermal expansions to higher temperatures. Calculated results are compared with experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Reeber, R. R. and Wang, K., Eur. J. Mineral., 7, 1039 (1995).10.1127/ejm/7/5/1039Google Scholar
2. Wang, K. and Reeber, R. R., Geophys. Res. Lett., 22, 1297 (1995).10.1029/95GL01194Google Scholar
3. Reeber, R. R. and Wang, K., J Electr. Mat., 25, 63 (1996).Google Scholar
4. Wang, K. and Reeber, R. R., J. Mat. Res., 11, 1800 (1996).Google Scholar
5. Reeber, R. R. and Wang, K., Mat. Res. Soc. Symp. Proc., 410, 211 (1996).Google Scholar
6. Reeber, R. R., phys. stat. soL (a), 32, 321 (1975).Google Scholar
7. Grüneisen, E., Handbuch der Physik, 10, 1 (1926).Google Scholar
8. Suzuki, I., Okajima, S., and Seya, K., J. Phys. Earth, 27, 63 (1979).10.4294/jpe1952.27.63Google Scholar
9. Slack, G. A., J. Phys. Chem. Solids, 34, 321 (1973).Google Scholar
10. Leszczynski, M., Teisseyre, H., Suski, T., Grzegory, I., Bockowski, M., Jun, J., Porowski, S., Pakula, K., Baranowski, J. M., Foxton, C. T., and Cheng, T. S., J. Appl. Phys., 69, 73 (1996).Google Scholar
11. Long, G. and Foster, L. M., J Am. Ceram. Soc.,42, 53 (1959).10.1111/j.1151-2916.1959.tb14066.xGoogle Scholar
12. Taylor, K. M. and Lenie, C., J. Electrochem. Soc., 107, 308 (1960).10.1149/1.2427686Google Scholar
13. Davies, T. J. and Evans, P. E., J. NucL Mat., 13, 152 (1964).10.1016/0022-3115(64)90037-6Google Scholar
14. Andreeva, T. V., Barantseva, I. G., Dudnik, E. M., and Yupko, V. L., High Temp., 2, 742 (1964).Google Scholar
15. Struk, L. I., Dubovik, T. V., and Kazakov, V. K., Refractories, No. 2, 131 (1967).10.1007/BF01290229Google Scholar
16. Samsonov, G. V., Andreeva, T. V., and Dubovik, T. V., High Temp.-High Pressures, 4, 537 (1972).Google Scholar
17. Yim, W. M. and Paff, R. J., J. AppL. Phys., 45, 1456 (1974).10.1063/1.1663432Google Scholar
18. Slack, G. A. and Bartram, S. F., J. Appl. Phys., 46, 89 (1975).10.1063/1.321373Google Scholar
19. Chanchani, R. and Hall, P. E., IEEE Trans. Comp., Hybrids, Manuf. Technol., 13, 743 (1990).Google Scholar
20. Ivanov, S. N., Popov, P. A., Egorov, G. V., Sidorov, A. A., Kornev, B. I., Zhukova, L. M., and Ryabov, V. P., Phys. Solid State, 39, 81 (1997).10.1134/1.1129837Google Scholar
21. Novikova, S. I., in Semiconductors and Semimetals, Vol.2., Physics of III-V Compounds, Edited by Willardson, R. K. and Beer, A.C., Academic Press, New York, 1966, p. 3348.Google Scholar
22. McNeil, L. E., Grimsditch, M., and French, R. H., J. Am. Ceram. Soc., 76, 1132 (1993).10.1111/j.1151-2916.1993.tb03730.xGoogle Scholar
23. Maruska, H. P. and Tietjen, J. J., AppL. Phys. Lett., 15, 327 (1969).10.1063/1.1652845Google Scholar
24. Ejder, E., phys. stat. soL. (a), 23, K87 (1974).10.1002/pssa.2210230160Google Scholar
25. Sheleg, A. U. and Savastenko, W. A., Izv. Akad. NaukBSSR, Ser.fiz.-mat. Nauk, No.3, 126 (1976).Google Scholar
26. Lesezczynski, M., Suski, T., Teisseyre, H., Perlin, P., Grzegory, I., Jun, J., Porowski, S., and Moustakas, T. D., J. AppL. Phys., 76, 4909 (1994)10.1063/1.357273Google Scholar
27. Leszczynski, M., Teisseyre, H., Suski, T., Grzegory, I., Bockowski, M., Jun, J., Palosz, B., and Porowski, S., Acta. Phys. Pol., 90, 887 (1996).10.12693/APhysPolA.90.887Google Scholar
28. Savastenko, V. A. and Sheleg, A. U., phys. stat. soL. (a), 48, K135 (1978).10.1002/pssa.2210480253Google Scholar
29. Plian, A., Grimsditch, M., and Grzegory, I., J. AppL Phys., 79, 3343 (1996).Google Scholar
30. Schwarz, R. B., Khachaturyan, K., and Weber, E. R., Appl. Phys. Lett., 70, 1122 (1997).10.1063/1.118503Google Scholar
31. Yamaguchi, M., Yagi, T., Azuhata, T., Sota, T., Suzuki, K., Chichibu, S., and Nakamura, S., J. Phys.: Condens. Matter, 9, 24 1 (1997).Google Scholar
32. Ueno, M., Yoshida, M., Onodera, A., Shimomura, O., and Takemura, K., Phys. Rev. B, 49, 14 (1994).Google Scholar
33. Kim, K., Lambrecht, W. R. L., and Segall, B., Phys. Rev. B, 53, 16310 (1996).10.1103/PhysRevB.53.16310Google Scholar