Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-21T17:16:43.308Z Has data issue: false hasContentIssue false

Thermal Quenching and Photo-Enhancement of μτ Products in a-Si:H - The Role of Dangling Bonds and Band Tails

Published online by Cambridge University Press:  16 February 2011

E. Morgado*
Affiliation:
Technical University of Lisbon, Centro de Física Molecular, Av. Rovisco Pais, Complexo I - IST, 1000 Lisboa, Portugal
Get access

Abstract

Results from numerical calculations with a recombination model involving one class of correlated dangling-bond states and exponential band tails, in a-Si:H, are reported. Fermi level, light intensity and temperature dependences of the μτ products are studied. The results are consistent with experimental data. It is found that photo-enhancement of (μτ)e, or superlinear photoconductivity, as well as thermal quenching, are associated with a capture cross section of the band tails smaller than the capture cross sections of the dangling-bond states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Morgado, E., Phil. Mag. B 63, 529 (1991)Google Scholar
2. Morgado, E., in Amorphous Silicon Technology 90, edited by Taylor, P.C., Thompson, M.J., Le Comber, P.G., Hamakawa, Y. and Madan, A. (Mater. Res. Soc. Proc. 192, Pittsburgh, PA, 1990) pp. 763768.Google Scholar
3. Morgado, E., in Amorphous Silicon Technology 92, edited by Thompson, M.J., Le Comber, P.G., Hamakawa, Y. and Madan, A. (Mater. Res. Soc. Proc. 258, Pittsburgh, PA, 1992) pp. 765770.Google Scholar
4. Morgado, E., J. Non-Cryst. Solids, 164–166, 627 (1993).CrossRefGoogle Scholar
5. Street, R.A. and Mott, N.F., Phys. Rev. Lett. 35, 1293 (1975).CrossRefGoogle Scholar
6. Street, R.A. and Biegelsen, D.K., J. Non-Cryst. Solids, 35–36, 651 (1980).Google Scholar
7. Okamoto, H. and Hamakawa, Y., Solid State Commun. 24, 23 (1977).CrossRefGoogle Scholar
8. Vaillant, F. and Jousse, D., Phys. Rev. B 34, 4088 (1986).Google Scholar
9. Simmons, J.G. and Taylor, G.W., Phys. Rev. B 4, 502 (1971).Google Scholar
10. Cohen, M., Fritzche, H. and Ovshinsky, S.R., Phys. Rev. Lett. 22, 1065 (1969).CrossRefGoogle Scholar
11. Spear, W.E., Steemer, H.L., Le Comber, P.G. and Gibson, L.A., Phil. Mag. B 50, L33 (1984)CrossRefGoogle Scholar
12. Yang, L., Catalano, A., Arya, R.R. and Balberg, I., Appl. Phys. Lett. 57, 908 (1990).Google Scholar
13. Balberg, I. and Lubianiker, Y., Phys. Rev. B 48, 8709 (1993).Google Scholar
14. Bube, R.H., J. Appl. Phys. 74, 5138 (1993).CrossRefGoogle Scholar
15. Vanier, P.E., Delahoy, A.E. and Griffith, R.W., J. Appl. Phys. 52, 5235 (1981).Google Scholar
16. Rose, A., in Concepts in Photoconductivity and Allied Problems (Wiley, New York, 1963)Google Scholar