Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-10-03T03:28:40.384Z Has data issue: false hasContentIssue false

Thermal Stability Enhancement Of Rubbery Ormosils

Published online by Cambridge University Press:  21 February 2011

S. J. Kramer
Affiliation:
University of California, Department of Materials Science and Engineering, Los Angeles, CA 90024-1595.
J. D. Mackenzie
Affiliation:
University of California, Department of Materials Science and Engineering, Los Angeles, CA 90024-1595.
Get access

Abstract

Thermal stability of a novel rubbery ORMOSIL of condensed tetraethoxysilane (TEOS) and polydimethylsiloxane (PDMS) was investigated along with methods by which to improve this stability. Based upon literature review of siloxane systems, modifications of the base ORMOSIL system was made which included substitution of polydimethyldiphenylsiloxane (PDMDPS) for PDMS, adding antioxidant, and adding iron compounds. Relative enhancement was investigated in terms of resilience measurements, and was also analyzed with thermo-gravimetric analysis (TGA) and differential thermal anaysis (DTA).

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Schmidt, H., Mat. Res. Soc. Symp. Proc., 32, 327 (1984).Google Scholar
2 Wilkes, G. L., Orler, B., and Huang, H., Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 26, 300-320 (1985).Google Scholar
3 Schmidt, H., J. Non-Cryst. Solids, 73,681-691 (1985).Google Scholar
4 Ravaine, D., Seminel, A., Charbouillot, Y., and Vincens, M., J. Non-Cryst. Solids, 82, 210-219(1986).Google Scholar
5 Wang, B., Brennan, A. B., Huang, H., and Wilkes, G. L., J. Macromol. Chem., 27,1447-1468(1990).Google Scholar
6 Schmidt, H. and Wolter, H., J. Non-Cryst. Solids, 121,428-435 (1990).Google Scholar
7 Pope, E. and Mackenzie, J. D., Mater. Res. Soc. Bull., 12, 929-931 (1987).Google Scholar
8 Dunn, B., Knobbe, E., Mckiernan, J. M., Pouxviel, J. C., and Zink, J. I., in Better Ceramics Through Chemistry π. edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Wiley, New York, 1988), p. 747.Google Scholar
9 Phillip, G. and Schmidt, H. J. Non-Cryst. Solids, 63, 283 (1984).Google Scholar
10 Mackenzie, J. D., Chung, Y. J., and Hu, Y., J. Non-Cryst. Solids, 147&148,271-279 (1992).Google Scholar
Fordham, S., Silicones. (George Newnes Ltd, London, 1960), p. 180.Google Scholar
12 Thomas, T. H. and Kendrick, T. C., J. Polym. Sei., A.2,7 (1969) 537.Google Scholar
13 Grassie, N., Francy, K. F., McFarlane, I. G., Polym. Degrdn. Stab., 2,67(1980).Google Scholar
14 Stille, J. K. and Mainen, E. L., J. Polym. Sei. B, 4 (1966) 39.Google Scholar
15 Murphy, C. M., Saunders, C. E., and Smith, D. C., Ind. Eng. Chem., 42, 2462 (1950).Google Scholar
16 Goldovskii, E. A. and Kuzminskii, A. S., R. G. C. P., 45 (4), 321 (1968).Google Scholar
17 Murphy, C. M., Saunders, C. E., and Smith, D. C., Ind. Eng. Chem., 42, 2462 (1950).Google Scholar
18 McGregor, R. R., Ind. Eng. Chem., 46,2323 (1954).Google Scholar
19 Brown, G. P., Hill, J. A., Murphy, C. B., J. Polym. Sei., 55,419 (1961).Google Scholar
20 Hughes, J. H., in Developments in Inorganic Polymer Chemistry, edited by Lappart, M. F. and Hughes, G. J. (Elsevier, London, 1962).Google Scholar
21 Breed, L. W., Elliot, R. L., Whitehead, M. E., J. Polym Sei A-1, 5, 2745 (1968).Google Scholar
22 Pittman, C. U., Patterson, W. J., McManus, S. P., J. Polym. Sei. Chem. Ed., 14, 1715 (1976).Google Scholar
23 Koide, N. and Lenz, R. W., J. of Polym Sei., Polymer Symposium, 70,91-105 (1983).Google Scholar
24 Hoffman, R. and Lipscome, W. N., J. Chem Phys., 36, 3489 (1962).Google Scholar
25 Sperling, L. H., Cooper, S. L., Tobolvsky, A.V., J. Appl. Polym. Sei., 10, 1725-1735 (1966).Google Scholar
26 Schroeder, H., Schaffing, O. G., Larchar, T. B., Frulla, F. F., and Heying, T. L., Rubber Chem. Technol., 39,1184 (1966).Google Scholar
27 Peters, E. N., Hedaya, E., Kawakami, J. H., Kwiatkowski, G. T., McNeil, K. W., and Tullis, R. W., Rubber Chem. Technol., 48,14 (1975).Google Scholar
28 Peters, E. N., J. Macromol. Sei. Rev. Macromolec. Chem., C17, 173 (1979).Google Scholar
29 McGregor, R. R. and Warrick, E. L., U. S. Patents 2,389,803 and 2,389,805, (Nov. 27, 1945).Google Scholar
30 Grassie, N., Scott, G., in: Polymer Degradation and Stabilization (Cambridge University Press, Cambridge, 1985), pp.122-124.Google Scholar
31 Berger, H., Bolsman, T. A., and Brouwer, D. M., Developments in Polymer Stabilization 4, edited by Scott, G. (Applied Science Publishers Ltd., London, 1983), p.1.Google Scholar
32 Miller, D. E., Dean, P. R., and Kuczkowski, J. A., Proceedings 127th Meeting of the Rubber Division, American Chemical Society, Los Angeles, CA, April 23-26 (1985), Paper No. 26.Google Scholar
33 Shustova, O. and Gladyshev, G. P., Russian Chemical Reviews, 45 (9), 865 (1976).Google Scholar
34 Nielson, J. M., in: Stabilization of Polymers and Stabilizing Processes. Advances in Chemistry Series 85, (Amer. Chem. Soc., Washington, 1968), p. 95.Google Scholar
35 Iwamoto, T., Morita, K., and Mackenzie, J. D., J. Non-Cryst. Solids, 159,65-72 (1993).Google Scholar
36 Goldovskii, E.A., Fatkulina, R. F., Kuz'minskii, A. S., and Dontsov, A. A., Int. Polym. Sei. and Tech., 5 (2), 22-25 (1978).Google Scholar