Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-12T21:16:15.312Z Has data issue: false hasContentIssue false

Thermodynamics of Hole and Hillock Growth in Thin Films

Published online by Cambridge University Press:  15 February 2011

D. J. Srolovitz
Affiliation:
Department of Materials Science and Eng., University of Michigan, Ann Arbor. MI 48104, srol@umich.edu
W. Yang
Affiliation:
Department of Materials Science and Eng., University of Michigan, Ann Arbor. MI 48104, srol@umich.edu
M. G. Goldiner
Affiliation:
Department of Materials Science and Eng., University of Michigan, Ann Arbor. MI 48104, srol@umich.edu
Get access

Abstract

This paper provides a thermodynamic analysis of hole and hillock growth in stressed thin films in simplified geometries. Two limiting cases were considered. In the first, matter is transported to (from) the growing hillock (hole) from (to) the surface of the film. In the second case, the material transported to (from) the growing hillock (hole) comes from (goes to) the interior of the film in the vicinity of the hillock (hole). When bulk relaxation is dominant, hillock growth is favored by a compressive stress in the film and hole growth is enhanced when the film is in tension. This is the commonly observed situation. On the other hand, when surface relaxation effects dominate, hillocks and holes can grow in either tension or compression.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kim, J. Y. and Hummel, R. E., Phys. stat. sol. (a) 122, 255 (1990).Google Scholar
2. Pennebaker, W. B., J. appl. Phys. 40, 394 (1969).Google Scholar
3. Lahiri, S. K. and Wells, O.C., J. appl. Phys. 46, 2791 (1975).Google Scholar
4. Murakami, M., and Kuan, T. S., Thin Solid Films 66, 381 (1980).Google Scholar
5. Delloca, C. J. and Learn, A. J., Thin Solid Films 8, R47 (1971).Google Scholar
6. d'Heurle, F., Berenbaum, L. and Rosenberg, R., Trans. metall. Soc A.I.M.E. 242, 502 (1968).Google Scholar
7. Sato, N., Oi, T., Matsumaru, H., Okubo, T. and Nishimura, T., Metall. Trans. 2, 691 (1971).Google Scholar
8. Mattson, L, Page, Y.-H. Le and Ericson, F., Thin Solid Films 198, 149 (1991).Google Scholar
9. Sharma, S. K. and Spitz, J., Thin Solid Films 65, 339 (1980).Google Scholar
10. Huang, H.-C. W., Chaudhari, P., Kircher, C. J. and Murakami, M., Phil. Mag. A 54, 583 (1986).Google Scholar
11. Génin, F. Y., Acta metall. Mater 43 4289 (1995).Google Scholar
12. Harris, K. E. and King, A. H., Mat. Res. Soc. Symp. Proc. 391, 73 (1995).Google Scholar
13. Jackson, M. S. and Li, C.-Y., Acta metall. 30, 1993 (1982).Google Scholar
14. Chaudhari, P., J. appl. Phys. 45, 4339 (1974).Google Scholar
15. Ronay, M. and Aliotta, C. F., Phil. Mag. A 42, 161 (1980).Google Scholar
16. Sanchez, J. E. Jr., and Artz, E., Scrpta metall, mater. 27, 185 (1992).Google Scholar
17. Brandon, R. and Bradshaw, F. J., Royal Aircraft Est., Tech Rep. No. 66095 (1966).Google Scholar
18. Jiran, E. and Thompson, C. V., Thin Solid Films 208, 23 (1992).Google Scholar
19. Hackney, S. A., Scripta metall. 22 1273 (1988).Google Scholar
20. Srolovitz, D. J. and Safran, S. A., J. appl. Phys. 60, 247 (1986); 60, 255 (1986).Google Scholar
21. Génin, F. Y., Mullins, W. W. and Wynblatt, P., Acta metall. mater. 40, 3239 (1992).Google Scholar
22. Srolovitz, D. J. and Goldiner, M. G., J. Metals 47[3], 31 (1995).Google Scholar
23. Lange, F. F., private communication (1995).Google Scholar
24. Freund, L. B. and Hu, Y., U.S. Dept. of Defense Tech. Rep. AD-A193 461/1/XAB (1988).Google Scholar
25. Liang, C. and Hutchinson, J., private communication.Google Scholar
26. Brebbia, C. A., Telles, J. C. F. and Wrobel, L. C., Boundary Element Techniques, Springer-Verlag, Berlin (1984).Google Scholar
27. Doerner, M. F. and Nix, W. D., CRC Critical Reviews in Solid State and Materials Sciences 14, 225 (1988).Google Scholar