Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-29T23:16:44.714Z Has data issue: false hasContentIssue false

Thermopower and Conductivity Activation Energies in Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  10 February 2011

H. M. Dyalsingh
Affiliation:
The University of Minnesota, School of Physics and Astronomy, Minneapolis, MN, 55455 USA.
J. Kakalios
Affiliation:
The University of Minnesota, School of Physics and Astronomy, Minneapolis, MN, 55455 USA.
Get access

Abstract

The long range fluctuation model has been widely used to account for the difference in activation energies seen experimentally in dark conductivity and thermopower measurements in hydrogenated amorphous silicon. We report on a test of this model using measurements of the conductivity and thermoelectric effects carried out in both open and short circuit configurations. While the thermopower activation energy is less than that of the dark conductivity, the short circuit Seebeck conductivity is found to be nearly identical to the dark conductivity in both activation energy and magnitude, consistent with the long range fluctuation model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Beyer, W. and Overhof, H., in Semiconductors and Semimetals, edited by Pankove, J. (Academic, London, 1984), vol.21 p. 257.Google Scholar
2. Jones, D. I., LeComber, P. G. and Spear, W. E., Phil. Mag. 36, 541 (1977).Google Scholar
3 Anderson, D. A. and Paul, W., Phil. Mag. B 44, 187 (1981).Google Scholar
4. Dyalsingh, H. M., Khera, G. M. and Kakalios, J., in Amorphous Silicon Technology - 1995. edited by Schiff, E. A., Hack, M., Madan, A., Matsuda, A. and Powell, M. (Mater. Res. Soc. Proc. 377, Pittsburg, PA, 1986) pp. 577582.Google Scholar
5. Emin, D., Seager, C. H. and Quinn, R. K., Phys. Rev. Lett. 28, 813 (1972).Google Scholar
6. Döhler, G. H., Phys. Rev. B 19, 2083 (1979); M. Grbnewald and P. Thomas, Phys. Stat. Sol. (b) 94, 125 (1979).Google Scholar
7. Anderson, D. A. and Paul, W., Phil. Mag. B 45, 1 (1982).Google Scholar
8. Ghiassy, F., Jones, D. I. and Stewart, A. D., Phil. Mag. B 52, 139 (1985).Google Scholar
9. Beyer, W. and Overhof, H., Solid State Comm. 31, 1 (1979).Google Scholar
10. Street, R. A., Kakalios, J. and Hack, M., Phys. Rev. B 38, 5603 (1988), H. Overhof and M. Silver, Phys. Rev. B 39, 10426 (1989).Google Scholar
11. Howard, J. A. and Street, R. A., Phys. Rev. B 44, 7935 (1991).Google Scholar
12. Fritzsche, H., Solid State Comm. 9, 1813 (1971).Google Scholar
13. Fritzsche, H., J. Non - Cryst. Solids 6, 49 (1971).Google Scholar
14. Reimer, J. A., Vaughan, R. W. and Knights, J. C., Phys. Rev. Lett. 44, 193 (1980).Google Scholar
15. Parman, C. and Kakalios, J., Phys. Rev. Lett. 67, 2529 (1991); C. E. Parman, N. E. Israeloff and J. Kakalios, Phys. Rev. B 44, 8391 (1991).Google Scholar
16. Zallen, R. and Scher, H., Phys. Rev. B 4, 4471 (1971); M. H. Brodsky, Solid State Comm. 36, 55 (1980).Google Scholar
17. Fritzsche, H., Appl. Phys. Lett. 65, 2824 (1994).Google Scholar
18. Hauschildt, D., Fuhs, W. and Mell, H., Phys. Stat. Sol. (b) 111, 171 (1982).Google Scholar
19. Street, R. A., Hydrogenated Amorphous Silicon (Cambridge University, Cambridge, 1991), Chap. 7.Google Scholar
20. Street, R. A., Knights, J. C. and Biegelsen, D. K., Phys. Rev. B 18, 1880 (1978).Google Scholar
21. Kakalios, J. and Street, R. A., Phys. Rev. B 34, 6014 (1986).Google Scholar