Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-12T14:16:05.866Z Has data issue: false hasContentIssue false

Thin Films of p-Type CdTe Grown with Ion-Beam-Assisted Doping

Published online by Cambridge University Press:  25 February 2011

Paul Sharps
Affiliation:
Dept. of Materials Science and Engineering, Stanford University, Stanford, CA 94305
Alan L. Fahrenbruch
Affiliation:
Dept. of Materials Science and Engineering, Stanford University, Stanford, CA 94305
Adolfo Lopez-Otero
Affiliation:
Dept. of Materials Science and Engineering, Stanford University, Stanford, CA 94305
Richard H. Bube
Affiliation:
Dept. of Materials Science and Engineering, Stanford University, Stanford, CA 94305
Get access

Extract

The purpose of the present work is to investigate p-CdTe thin films grown by ionassisted doping (IAD). Controlled doping in homo-epitaxial films resulting in carder densities up to 2×1017 cm-3 was obtained using P ions as the dopant. About 1.5% of the impinging P ions became electrically active in the films. Solar cells of n-CdS/p-CdTe were prepared and used as a diagnostic tool in understanding the p-CdTe films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Greene, J. E., Matooka, T., Sundgren, J.-E., Rockett, A., Gorbatkin, S., Lubben, D., and Barnett, S.A., J. Crystal Growth 79, 19 (1986).CrossRefGoogle Scholar
2. Greene, J. E. and Barnett, S. A., Proc. Intl. Ion Engineering Congress-ISIAT '83 & IPAT '83, Kyoto 1983, 1049.Google Scholar
3. Bean, J. C. and Dingle, R., Appl. Phys. Lett. 35, 925 (1979).10.1063/1.91007CrossRefGoogle Scholar
4. Ota, Y., J. Appl Phys. 51, 1102 (1980).10.1063/1.327717Google Scholar
5. Sugiura, H., J. Appl. Phys 51, 2630 (1980).Google Scholar
6. Shimizu, S. and Komiya, S., J. Vac. Sci. Technol. 18(3), 765 (1981)Google Scholar
7. Bajor, G. and Greene, J. E., J. Appl. Phys. 54, 1579 (1983).CrossRefGoogle Scholar
8. Tyan, Y. S., Vazan, F., and Barge, T. S., Proc. 17th IEEE Photovoltaic Spec. Conf. 1984, 835.Google Scholar
9. Fortmann, C. M., Fahrenbruch, A. L., and Bube, R. H., J. Appl. Phys. 61, 2038 (1987).Google Scholar
10. Strauss, A. J., Rev. Phys. Appl. 12, 167 (1977).10.1051/rphysap:01977001202016700CrossRefGoogle Scholar
11. Bube, R. H., Progress Report #2, SERI Subcontract XW-1-9330-1, April 30, 1981.Google Scholar
12. Bicknell, R. N., Giles, N. C., and Schetzina, J. F., Appl. Phys. Lett. 49, 1735 (1986).CrossRefGoogle Scholar
13. Schetzina, J. F. (private communication).Google Scholar
14. Ghandi, S. K., Tasker, N. R., and Bhat, I. B., Appl. Phys. Lett. 50, 900 (1987).Google Scholar
15. Fahrenbruch, A. L., Lopez-Otero, A., Chien, K. F., Sharps, P., and Bube, R. H., Proc. 19th IEEE Photovoltaic Spec. Conf. 1987, 1309.Google Scholar
16. Thorpe, T. P. Jr., Fahrenbruch, A. L., and Bube, R. H., J. Appl. Phys. 60, 3622 (1986).Google Scholar
17. Huber, W., Fahrenbruch, A. L., Fortmann, C., and Bube, R. H., J Appl. Phys. 54, 4038 (1983).Google Scholar
18. CdTe single crystals grown at the Stanford University Center for Material Research Crystal Synthesis Lab by Raymakers, R. and Route, R..Google Scholar
19. Anthony, T., Fortmann, C., Huber, W., Bube, R. H., and A Fahrenbruch, Proc. 17th IEEE Photovoltaic Spec. Conf 1984, 827.Google Scholar
20. Kimmerling, L. C., J. Appl. Phys. 45, 1839 (1974).Google Scholar
21. Shiau, J. J., Fahrenbruch, A. L., and Bube, R. H., J. Appl. Phys. 59, 2879 (1986).Google Scholar