Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T23:22:02.692Z Has data issue: false hasContentIssue false

Thin-Film Aerogel Porosity and Stiffness Characterized by Surface Acoustic Wave Spectroscopy

Published online by Cambridge University Press:  17 March 2011

C.M. Flannery
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin, Germanyflannery@pdi-berlin.de
C. Murray
Affiliation:
Centre of Microtechnologies, Chemnitz University of Technology, 09107 Chemnitz, Germany
M.R. Baklanov
Affiliation:
IMEC, Leuven, Belgium
I. Streiter
Affiliation:
Centre of Microtechnologies, Chemnitz University of Technology, 09107 Chemnitz, Germany
S.E. Schulz
Affiliation:
Centre of Microtechnologies, Chemnitz University of Technology, 09107 Chemnitz, Germany
Get access

Abstract

Density/porosity and stiffness are the most critical parameters determining properties of porous films, however they are difficult to measure. Here we report characterization of density/porosity and Young's modulus values of a range of nanoporous silica aerogel films via dispersion of laser-generated wideband surface acoustic waves. Results are compared to dielectric constant, Rutherford Backscattering Spectrometry (RBS), Ellipsometric Porosimetry (EP) and Nanoindentation (NI). RBS density correlates well to SAW. EP and NI also show a correlation, however the absolute values do not match. Low Young's modulus values show that the film stiffness is drastically reduced with increasing porosity. The technique is rapid, nondestructive and relatively inexpensive, and yields absolute values of nanoporous aerogel elastic properties which are useful for process control and are difficult to access with other techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brinker, C.J., Scherer, G.W., Sol Gel Science, Academic Press, New York, 1990.Google Scholar
2. Prakash, S.S., Brinker, C.J., Hurd, A.J., Rao, S.M., Nature 374, 439 (1995).Google Scholar
3. Nitta, S.V., Pisupatti, V., Jain, A., Wayner, P.C. Jr., Gill, W.N., Plawsky, J.L., J. Vac. Sci. Technol. B 17, 205 (1999).Google Scholar
4. Jin, C., Luttmer, J.D., Smith, D.M., Ramos, T.A., MRS Bull. 22, (10) 39 (1997).Google Scholar
5. Petkov, M.P., Weber, M.H., Lynn, K.G., Rodbell, K.P., Cohen, S.A., J. Appl. Phys., 45, 3104 (1999).Google Scholar
6. Wu, W.L., Wallace, W.E., Lin, E.K., Lynn, G.W., Glinka, C.J., Ryan, E.T. and Ho, H.M., J. Appl. Phys. 87, 1282, 2000.Google Scholar
7. Craciun, F., Guidarelli, G., Galassi, C., Roncari, E., Proc. IEEE Ultrasonics Symp., 1997, p. 573.Google Scholar
8. Winkler, T., Schulz, S.E., Gessner, T., ULSI XIII MRS Proceedings vol. V–13, 347 (1998).Google Scholar
9. Flannery, C.M., Murray, C., Streiter, I. and Schulz, S.E., Thin Solid Films 588, 1 (2001).Google Scholar
10. Coufal, H., Grygier, R., Hess, P., Neubrand, A., J. Acoust. Soc. Am. 92, 2980 (1992).Google Scholar
11. Kuschnereit, R., Fath, H., Kolomenskii, A.A., Szabadi, M., Hess, P., Appl. Phys. A 61, 269 (1995).Google Scholar
12. Baklanov, M.R., Mogilnikov, K.P., Polovinkin, V.G. and Dultsev, F.N., J. Vac. Sci. Technol. B 18, 1385 (2000).Google Scholar
13. Hay, J.L. and Pharr, G.M., in ASM Handbook Vol. 8: Mechanical Testing and Evaluation, ed. Kuhn, H. and Medlin, D., (ASM International, 2000), pp. 232243.Google Scholar
14. Schneider, D., Ollendorf, H., Schwarz, T., Appl. Phys. A 61, 277 (1995); D. Schneider, T. Schwarz, H.-J. Scheibe, M. Panzner, Thin Solid Films 295, 107 (1997).Google Scholar
15. Wagner, J.W., Nondestr. Test. Eval. 7, 107 (1992).Google Scholar
16. Murray, C., Flannery, C.M., Streiter, I., Schulz, S.E., Baklanov, M.R., Mogilnikov, K.P., Himcinschi, C., Friedrich, M., Zahn, D.R.T., Gessner, T., presented at Materials for Advanced Metallisation conference (MAM2001), Sigtuna, Sweden, March 2001, to be published in Microelectronic Engineering.Google Scholar