Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-28T19:55:17.115Z Has data issue: false hasContentIssue false

Thin-Film Transistors based on Hot-Wire Amorphous Silicon on Silicon Nitride

Published online by Cambridge University Press:  15 February 2011

B. Stannowski
Affiliation:
Debye Institute, Interface Physics, Utrecht UniversityP.O. Box 80000, 3508 TA Utrecht, The Netherlands
H. Meiling
Affiliation:
Debye Institute, Interface Physics, Utrecht UniversityP.O. Box 80000, 3508 TA Utrecht, The Netherlands
A. M. Brockhoff
Affiliation:
Debye Institute, Interface Physics, Utrecht UniversityP.O. Box 80000, 3508 TA Utrecht, The Netherlands
R. E. I. Schropp
Affiliation:
Debye Institute, Interface Physics, Utrecht UniversityP.O. Box 80000, 3508 TA Utrecht, The Netherlands
Get access

Abstract

We present state-of-the-art thin-film transistors (TFTs) incorporating amorphous silicon i-layers deposited by hot-wire chemical vapor deposition. The TFTs are deposited on glow-discharge silicon nitride as well as on thermally-grown silicon dioxide. The devices on silicon nitride have a field-effect mobility above 0.7 cm2/Vs, a threshold voltage around 2 V and a sub-threshold slope as low as 0.5 V/dec. As commonly observed, the TFTs on silicon-dioxide have higher values for the threshold voltage and the sub-threshold slope. In the annealed state the hot-wire TFTs show almost the same properties as TFTs deposited by conventional plasma-enhanced chemical vapor deposition. Nevertheless, the stress-time dependent behavior under prolonged gate-voltage stress at elevated temperature is different from that of the glow-discharge devices. The hot-wire TFTs are clearly more stable than their glow-discharge counterparts. Furthermore, we found differences in the stress behavior of the hot-wire TFTs deposited on silicon nitride and silicon dioxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Hepburn, A. R, Marshall, J. M., Main, C., Powell, M. J., and Berkel, C. van, Phys. Rev. Lett. 56 (20) p 2215 (1986).Google Scholar
[2] Berkel, C. van and Powell, M. J., Appl. Phys. Lett. 51 (14) p. 1094 (1987).Google Scholar
[3] Powell, M. J., Berkel, C. van, and Hughes, J. R., Appl. Phys. Lett. 54 (14) p. 1323 (1989).Google Scholar
[4] Powell, M. J., Deane, S. C., French, I. D., Hughes, J. R., Milne, W. I., Philos. Mag. B 63 (1) p. 325 (1991).Google Scholar
[5] Schropp, R. E. I. and Verwey, J. F., Appl. Phys. Lett. 50 (4) p. 185 (1987).Google Scholar
[6] Nickel, N., Fuhs, W., Mell, H, Philos. Mag. B 61 (2) p. 251 (1990).Google Scholar
[7] Powell, M. J., Berkel, C. van, Franklin, A. R., Deane, S. C., and Milne, W. I., Phys. Rev. B 45 (8) p. 4160 (1992).Google Scholar
[8] Meiling, H. and Schropp, R. E. I., Appl. Phys. Lett. 69 (8) p. 1062 (1996).Google Scholar
[9] Matsumura, H., Proc. Electrochem. Soc. Thin Film Transistor Technologies IV, Boston (1998).Google Scholar
[10] Chu, V., Jarego, J., Silva, H., Silva, T., Reissner, M., Brogueira, P. and Conde, J. P., Appl. Phys. Lett. 70 (20) p. 2714 (1997).Google Scholar
[11] Meiling, H. and Schropp, R. E. I., Appl. Phys. Lett. 70 (20) p. 2681 (1997).Google Scholar
[12] Brockhoff, A. M., Meiling, H., Habraken, F. H. P. M., and Schropp, R. E. I., Proc. Electrochem. Soc. Thin Film Transistor Technologies IV, Boston (1998).Google Scholar
[13] Meiling, H., Sark, W. G. J. H. M. van, Bezemer, J., and Weg, W. F. van der, J. Appl. Phys. 80 p. 3546 (1996).Google Scholar
[14] Schropp, R. E. I., Feenstra, K. F., Molenbroek, E. C., Meiling, H., Rath, J. K., Philos. Mag. B 76 p. 309 (1997).Google Scholar
[15] Claassen, W. A. P., Valkenburg, W. G., Habraken, F. H., and Tamminga, Y., Proc. Electrochem. Soc. 83 (8) p. 430 (1983).Google Scholar
[16] Deane, S. C., Wehrspohn, R. B., and Powell, M. J., Phys. Rev. B 58 (19) p. 12625 (1998).Google Scholar