Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T21:22:22.666Z Has data issue: false hasContentIssue false

Time-domain Terahertz Spectroscopy of Strontium Bismuth Tantalate Thin Films

Published online by Cambridge University Press:  01 February 2011

K. Kotani
Affiliation:
Research Center for Superconductor Photonics, Osaka University, 2–1 Yamadaoka, Suita, Osaka 5600045, Japan.
M. Misra
Affiliation:
Research Center for Superconductor Photonics, Osaka University, 2–1 Yamadaoka, Suita, Osaka 5600045, Japan.
I. Kawayama
Affiliation:
Research Center for Superconductor Photonics, Osaka University, 2–1 Yamadaoka, Suita, Osaka 5600045, Japan.
M. Tonouchi
Affiliation:
Research Center for Superconductor Photonics, Osaka University, 2–1 Yamadaoka, Suita, Osaka 5600045, Japan.
Get access

Abstract

We have measured the dielectric and optical properties of pulsed laser deposited SrBi2Ta 2O9 and Sr0.8Bi2.2Ta2O9 thin films on MgO substrate in THz frequency region by THz time-domain spectroscopy. The imaginary parts of the dielectric constant of both the samples show broad peaks in the frequency range 0.5–1.0 THz, which may be due to the soft mode in SBT in this frequency spectrum. The difference in the real part of the dielectric constant of Sr0.8Bi2.2Ta2O9 thin films is small for MHz and THz frequencies. On the other hand, the value of real part of dielectric constant of SrBi2Ta2O9 thin films in THz frequency range is much smaller than that in MHz frequency region, indicating that SrBi2Ta2O9 is not simply displacive ferroelectric material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. de Araujo, C. A.-Paz, Cuchlaro, J. D., McMillan, L. D., Scott, M. C. and Scott, J. F., Nature 374, 627 (1995).Google Scholar
2. Mihara, T., Yoshimori, H., Watanabe, H. and de Araujo, C. A.-Paz, Jpn. J. Appl. Phys. 34 5233 (1995).Google Scholar
3. Noguchi, T., Hase, T. and Miyasaka, Y., Jpn. J. Appl. Phys. 35 4900 (1996).Google Scholar
4. Noguchi, Y., Miyayama, M. and Kudo, T., J. Appl. Phys. 88 2146 (2000).Google Scholar
5. Moret, M. P., Zallen, R., Newnham, R. E., Joshi, P. C. and Desu, S. B., Phys. Rev. B 57 5715 (1998).Google Scholar
6. Kojima, S., J. Phys.: Condens. Matter. 10 327 (1998).Google Scholar
7. Kida, N., Hangyo, M. and Tonouchi, M., Phys. Rev. B 62 R11965 (2000).Google Scholar
8. Kawayama, I., Kotani, K., and Tonouchi, M., Jpn. J. Appl. Phys. 41 6803 (2002).Google Scholar
9. Kida, N. and Tonouchi, M., Phys. Rev. B 66 244011 (2002).Google Scholar
10. Kotani, K., Kawayama, I., Tonouchi, M., Hotta, Y. and Tabata, H., Jpn. J. Appl. Phys. in preparing.Google Scholar