Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-19T05:46:50.508Z Has data issue: false hasContentIssue false

Time-resolved light propoagation at the band-edge states of 1D Fibonacci quasicrystals

Published online by Cambridge University Press:  01 February 2011

L. Dal Negro
Affiliation:
INFM and Department of Physics, University of Trento, Povo (TN), ITALY.
C. J. Oton
Affiliation:
INFM and Department of Physics, University of Trento, Povo (TN), ITALY.
Z. Gaburro
Affiliation:
INFM and Department of Physics, University of Trento, Povo (TN), ITALY.
L. Pavesi
Affiliation:
INFM and Department of Physics, University of Trento, Povo (TN), ITALY.
P. J. Johnson
Affiliation:
Van der Waals-Zeeman Institute, University of Amsterdam, Amsterdam, THE NETHERLANDS
A. Lagendijk
Affiliation:
Van der Waals-Zeeman Institute, University of Amsterdam, Amsterdam, THE NETHERLANDS
D. S. Wiersma
Affiliation:
European Laboratory of Nonlinear Spectroscopy, Florence, ITALY.
Get access

Abstract

Infrared time-resolved interferometric transmission measurements have been performed on one dimensional porous silicon Fibonacci quasicrystals, obtained by electrochemical etching a p-type Si substrate, to address experimentally the problem of light transport and localization in deterministic aperiodic structures. Coherent beatings, pulse stretching and strong pulse delay on a picosecond time scale have been measured when the laser wavelength was tuned at the onedimensional band-edge of a 233-layers Fibonacci quasicrystal where quasi-localized states exist. The observation of these dramatic pulse distortion effects demonstrates the selective excitation of very-narrow localized optical modes. One dimensional transfer matrix and scattering states simulations yield the electromagnetic field distribution inside the structure and reproduce these experimental data supporting the general conclusion about the observation of quasi-localized photonics states.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yablonovich, E., Phys. Rev. Lett. 58, 2059, (1987)Google Scholar
2 Joannopulos, J.D., Villeneuve, P.R., Fan, S., Nature, 386, 143, (1997)Google Scholar
3 Albada, M.P. van, Lagendijk, A., Phys.Rev.Lett. 55, 2692 (1985)Google Scholar
4 Wiersma, D.S., Albada, M.P. van, Tiggelen, B.A. van, Lagendijk, Ad, Phys.Rev.Lett. 74, 21, 4193 (1995)Google Scholar
5 Wiersma, D.S., Bartolini, P., Lagendijk, A., Righini, R., Nature (London) 390, 671 (1997)Google Scholar
6 Sheng, Ping, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena, Academic Press 1995 Google Scholar
7 Shechtman, D., Blech, I., Gratias, D.,Cahn, J.W., Phys.Rev.Lett. 53, 1951 (1984)Google Scholar
8 Kohmoto, M.,Sutherland, B., Phys.Rev.B, 35, 1020 (1987)Google Scholar
9 Desideri, J.P.,Macon, L., Sornette, D., Phys.Rev.Lett. 63, 390 (1989)Google Scholar
10 Capaz, R.B., Koiller, B., Queiroz, S.L.A., Phys.Rev.B, 42, 6402 (1990)Google Scholar
11 Dulea, M., Johansson, M., Riklund, R., Phys.Rev.B, 45, 105 (1992)Google Scholar
12 Pavesi, L., Riv.Nuovo Cim. 10, (1997)Google Scholar
13 Sorek, Y., Reisfeld, R., Weiss, A.M., Chem. Phys.Lett. 244, 371 (1995)Google Scholar
14 Imhof, A., Vos, W.L., Sprik, R., Lagendijk, A., Phys. Rev. Lett. 83, 15, 2942 (1999)Google Scholar
15 Kop, Rik.H.J., Sprik, R., Rev.Sci.Instrum. 66, 5459 (1995)Google Scholar
16 Pedrotti, F.L., Pedrotti, L.S., Introduction to Optics, Prentice-Hall, (1987)Google Scholar
17 Kavokin, A., Malpuech, G., Carlo, A. Di, Lugli, P., Rossi, F., Phys. Rev. B, 61, 7, 4413, (2000)Google Scholar