Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-07T15:26:37.451Z Has data issue: false hasContentIssue false

Ti/Pt Based Contacts to Heterojunction Bipolar Transistors

Published online by Cambridge University Press:  25 February 2011

T. S. Kalkur
Affiliation:
Microelectronics Research Laboratories, Department of Electrical and Computer Engineering, University of Colorado at Colorado Springs, CO 80933
P. D. Wright
Affiliation:
Martin Kestrel Company, Inc., Colorado Springs, CO.
S. K. Ko
Affiliation:
Martin Kestrel Company, Inc., Colorado Springs, CO.
Y. C. Lu
Affiliation:
Department of Electrical and Computer Engineering, Rutgers University, New Jersey.
L. Casas
Affiliation:
Army Research Lab, Electronic Technology and Device Laboratory, Fort Monmouth, NJ 07703.
K. A. Jones
Affiliation:
Army Research Lab, Electronic Technology and Device Laboratory, Fort Monmouth, NJ 07703.
Get access

Abstract

Ti/Pt metallization was used to form contacts on both n+-InAs emitter cap and p+ base layers of heterojunction bipolar transistors (HBTs). The as-deposited contacts were found to be ohmic for both the base and emitter cap layers. Rapid thermal processing of the contact metallizations was performed in the temperature range of 3 00–500 C for 30 seconds. Minimum contact resistivities of l×10-6 ohm-cm2 for the base and 3×l0-7 ohm-cm2 for the emitter layer were achieved. The influence of heat treatment on contact morphology was also examined.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

. Kazior, T. K., Hieslmair, H. H. and Brookes, R. C., Mat. Res. Soc. Symp. Proc., VOl.181, 313, 1990 Google Scholar
2. Jourdan, N., Alexandre, F., Chantal-Duban-Chevallier, , Dangla, Jean, and Gao, Y., IEEE Trans on ED., vol.39, no.4,Google Scholar
3. Li, W. Q. and Bhattacharya, P. K., IEEE EDL, Vol.13, no.1, 29 (1992)Google Scholar
4. Streit, D. C., Oki, A. K., Umemoto, D. K., Velbir, J. K., Stolt, K. S., Yamada, F. M., Sato, Y., Hapzi, M., Bui, S. and Tran, L.T., IEEE EDL, vol.12, no.9, (1991)Google Scholar
5. Streit, D. C. et al, IEEE EDL, VOl.12, no.5, 199,(1991)Google Scholar
6. Chiu, T. H., Kuo, T. Y., Fonstad, C. F., IEEE Trans, on ED., Vol.38, No.11, 2423 (1991)Google Scholar
7. Gossen, K. W., Kuo, T. Y., Cunningham, J. E., Fan, W. Y., Fonstad, C. F., IEEE EDL, vol.38, no.11, 2423 (1991)CrossRefGoogle Scholar
8. Murakami, M., Shih, Y. C., Price, W. H., and Wilkie, E. L., J. Appl. Phys., 64, 1974 (1988)Google Scholar
9. Katz, A., Dautremont-Smith, W. C., Chu, S. N. G., Thomas, P. M., Koszi, L. A., Lee, J. W., Riggs, V. G., Brown, R. L., Napholtz, S. G., Zilko, J. L. and Lahav, A., Appl. Phys. Lett., 54, 2306 (1989).Google Scholar
10. Berger, H. H., Solid State Electronics, 15, 145 (1972)Google Scholar
11. Savin, W., Weir, B. E., Katz, A., Chu, S. N. G., Nakahara, S. and Harris, D. W., Mat. Res. Soc. Symp. Proc. Vol.181, 227 (1990)Google Scholar