Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-26T18:49:21.019Z Has data issue: false hasContentIssue false

Toward a Practical Model of a-Si:H Defects in Intensity-Time-Temperature Space

Published online by Cambridge University Press:  16 February 2011

D. Caputo
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, N.J. 08544
J. Bullock
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, N.J. 08544
H. Gleskova
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, N.J. 08544
S. Wagner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, N.J. 08544
Get access

Abstract

In this paper we develop a model of the defect kinetics in hydrogenated Amorphous silicon (a:Si:H) with the goal of predicting the density of defect states g (E) established by any given light intensity I, for arbitrary times t and temperatures T. While we build on widely accepted expressions for the the rates of light-induced and thermal annealing, we examine in more detail the light induced annealing (LIA) term. The model shows that the LIA process can be described with the thermal annealing term if a suitable reduction to the annealing energy is introduced. This reduction depends on the light intensity such as to suggest a relation to the shift of the electron quasi-Fermi level under illumination.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Staebler, D.L., Crandall, R.S. and Williams, R., Appl. Phys. Lett. 39, 733 (1981).Google Scholar
2. Tonon, T., Li, X. and Delahoy, A.E., in AMer Inst. Phys. Conference Proceedings 234. edited by Stafford, B.L., (American Institute of Physics, Denver, CO, 1991) pp. 259267.Google Scholar
3. Fujikake, S., Ota, H., Oshawa, M., Hama, T., Ichikawa, Y. and Sakai, H., in Technical Digest. of the 7& International Photovoltaic Science and Enginering Conference. (Nagoya Inst. Tech., 1993) pp. 285286.Google Scholar
4. Stutzmann, M., Jackson, W.B. and Tsai, C.C., Phys. Rev. B 32, 23 (1985).CrossRefGoogle Scholar
5. Wu, Z.Y., Siefert, J.M. and Equer, B., J. Non-Cryst. Solids 137/138, 227 (1991).CrossRefGoogle Scholar
6. Meaudre, R. and Meaudre, M., Phys. Rev. B 45, 12134 (1992).Google Scholar
7. Graeff, C.F.O., Buhleier, R. and Stutzmann, M., Appl. Phys. Lett. 62, 3001 (1993).CrossRefGoogle Scholar
8. Gleskova, H., Morin, P.A. and Wagner, S. in Amorphous Silicon Technology, edited by Schiff, E.A., Thompson, M.J., Madan, A., Tanaka, K., LeComber, P.G. (Mat. Res. Soc. Symp. Proc. 297, Pittsburgh, PA, 1993) pp. 589594.Google Scholar
9. Hata, N. and Wagner, S., J. Appl. Phys. 72, 2857 (1992).Google Scholar
10. Schumm, G. and Bauer, G.H., Philos. Mag. B 64, 515 (1991).Google Scholar
11. Street, R.A., Appl. Phys. Lett. 59, 1084 (1991).Google Scholar
12. Gleskova, H., Bullock, J.N. and Wagner, S., J. Non-Cryst. Solids 164/166, 183 (1993).Google Scholar
13. Slobodin, D., Aljishi, S., Schwartz, R. and Wagner, S. in Materials Issues in Applications of Amorphous Silicon Technology edited by Adler, D., Madan, A., Thompson, M.J. (Mat. Res. Soc. Symp. Proc. 49, Pittsburgh, PA, 1985), pp. 153160.Google Scholar
14. Kolodzey, J., Aljishi, S., Schwartz, R., Slobodin, D. and Wagner, S., J. Vac. Sci. Tech. A 4, 2499 (1986).CrossRefGoogle Scholar
15. Gleskova, H., Nakata, M. and Wagner, S., Mat. Res. Soc. Symp. Proc. (1994), this volume.Google Scholar