Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-29T16:14:36.593Z Has data issue: false hasContentIssue false

Towards a True Fe-Ni Phase Diagram

Published online by Cambridge University Press:  21 February 2011

P L. Rossiter
Affiliation:
Department of Materials Engineering, Monash University, Clayton, Victoria 3168, Australia
R. A Jago
Affiliation:
Department of Materials Engineering, Monash University, Clayton, Victoria 3168, Australia
Get access

Abstract

A modification to the existing Fe-Ni phase equilibrium diagram is proposed that takes account of the low-temperature ordering reaction to FeNi. It is shown that true equilibrium is never attained during slow cooling of Fe-Ni alloys, even for iron meteorites (which cool extremely slowly). In all real cases, a metastable phase diagram applies, in which the depressed γ/α+γ solvus produces a more extensive γ+ FeNi phase field than for the equilibrium case. This enlarged phase field is used to explain the decomposition of supersaturated Fe-Ni to γ+ FeNi, which is observed only in iron meteorites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Metals Handbook, 8th ed., Vol.8, American Society for Metals, Metals Park, Ohio, 1973, p. 304.Google Scholar
2. Romig, A. D., and Goldstein, J. I., Met.Trans. A, 11A, 1151 (1980).Google Scholar
3. Goldstein, J. I., and Ogilvie, R. E., Trans. AIME, 223, 2083 (1965).Google Scholar
4. Owen, E. A., and Liu, Y. H., Jnl. Iron and Steel Inst., 163, 132 (1949).Google Scholar
5. Kachi, S., Bando, Y., and Higuchi, S., Jap. Jnl. Appl. Phys., 1, 307 (1962).Google Scholar
6. Heumann, T., and Karsten, G., Arch. Eisenh., 10, 781 (1963).Google Scholar
7. Jago, R. A., and Rossiter, P. L., Phys. Stat. Sol.(a), 72, 497 (1982).Google Scholar
8. Paulevé, J., Dautreppe, D., Laugier, J. and Néel, L., J. de Phys. et Rad., 23, 841 (1962).Google Scholar
9. Chamberod, A., Laugier, J. and Penisson, J. M., J. Magn. Magn. Mat., 10, 139 (1979).Google Scholar
10. Clarke, R. S. and Scott, E. R. D., Am. Min., 65, 624 (1980).Google Scholar
11. Albertsen, J. F., Jensen, G. B., Knudsen, J. M. and Danon, J., Meteoritics, 13, 379 (1978).Google Scholar
12. Jago, R. A., Clark, P. E. and Rossiter, P. L., Phys. Stat. Sol.(a), 74, 247 (1982).Google Scholar
13. Josso, E., Comptes. Rend., 230, 1467 (1950).Google Scholar
14. Tino, Y., Science Rep. Tohoku Univ., Ser. I, 40, 17 (1956).Google Scholar
15. Hausch, G. and Warlimont, H., Phys. Lett. A, 36, 415 (1971).Google Scholar
16. Desch, C. H., Iron and Steel Inst. Special Rpt. No. 14, (London, 1936), p. 63.Google Scholar
17. Chikazumi, S. in: “Physics and Applications of Invar Alloys”, Honda Memorial Series on Materials Science, Vol. 3, Maruzen, Tokyo, 1978, p. 18.Google Scholar
18. Dubinin, S. F., Teploukhov, S. G., Izyumov, Yu. A., Syromyatnikov, V. N. and Sidorov, S. K., Phys. Met. Metall., 50(6), 133 (1980).Google Scholar
19. Goldstein, J. I., and Doan, A. S., Geochim. Cosmochim. Acta, 37, 51 (1972).Google Scholar
20. Scott, E. R. D., Geochim. Cosmochim. Acta, 37, 2283 (1973).Google Scholar
21. Lin, L. S., Goldstein, J. S., and Williams, D. B., Geochim. Cosmochim. Acta, 43, 725 (1979).Google Scholar
22. Danon, J., Scorzelli, R., Souza Azevedo, I., Curvello, W., Albertsen, J. F. and Knudsen, J. M., Nature, 277, 283 (1979).Google Scholar
23. Goldstein, J. I., Hannemann, R. E and Ogilvie, R. E., Trans. AIME, 233, 812 (1965).Google Scholar
24. Marchand, A. and Chamberod, A., Acad, C. R.. Sci. Paris, 261, 3113 (1965).Google Scholar
25. Rodionov, Yu. L., Isfandiyanov, G. G. and Sarsenbin, O. S., Phys. Met. Metall., 48, 67 (1981).Google Scholar
26. Botto, R.I. and Morrison, H., Am.Jnl.Sci., 276, 241 (1976).Google Scholar