Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-15T16:32:28.592Z Has data issue: false hasContentIssue false

Transition Between Condensed Phases In Si And Ge

Published online by Cambridge University Press:  26 February 2011

David Turnbull*
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138, USA
Get access

Abstract

The thermodynamic interrelation between the amorphous semiconducting (a-sc), the diamond cubic (c-sc) and the liquid metal (lm) states of Ge and Si is reviewed with especial emphasis on the question of the thermodynamic uniqueness of the a-sc state following its structural relaxation. The experience on the occurrence of the direct lm→a-sc transition and its reverse is surveyed and interpreted. This experience, in conjunction with the lm undercooling studies of Devaud and the author, indicates that the formation, in the metastable regime, of a-sc from lm results from preferential growth rather than preferential nucleation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Turnbull, D., J. de Physique 43 C-1, 259 (1982).Google Scholar
2. Turnbull, D., a) Mats. Res. Soc. Symp. Proc. 7, 103 (1983);CrossRefGoogle Scholar
b) ibid, 13, 131 (1983).CrossRefGoogle Scholar
3. Spaepen, F. and Turnbull, D., “Laser Annealing of Semiconductors,” (ed. Poate, J.M. and Mayer, J.W.), pp. 1542, Academic Press, NY (1982).CrossRefGoogle Scholar
4. Donovan, E.P., Spaepen, F., Turnbull, D., Poate, J.M., and Jacobson, D.C., J. Appl. Phys. 57, 1795 (1985).CrossRefGoogle Scholar
5. Czepregi, L., Kullen, R.P., Mayer, J.W. and Sigmon, T.W., Sol. State Conmmun. 21, 1019 (1977).CrossRefGoogle Scholar
6. Czepregi, L., Kennedy, E.F., Mayer, J.W., and Sigmon, TW., J. Appl. Phys. 49, 3906 (1978).CrossRefGoogle Scholar
7. Olson, G.L., Kokorowski, S.A., Ross, J.A., and Hess, L.D., Mats. Res. Soc. Proc. 13, 141 (1983).CrossRefGoogle Scholar
8. Lietoila, A., Wakita, A., Sigmon, T.W., and Gibbons, J.F., J. Appl. Phys. 53, 4399 (1982).CrossRefGoogle Scholar
9.a) Gore, G., Phil. Mag. 9, 73 (1855);CrossRefGoogle Scholar
b) Takamori, T.T., Messier, R., and Roy, R., J. Mat. Sci. 8, T809 (1973);CrossRefGoogle Scholar
c) Auvert, G., Bensahel, D., Perio, A., Nguyen, V.T., Rozgoni, G.A., Appl. Phys. Lett. 39, 724 (1981).CrossRefGoogle Scholar
10. Gilmer, G.H. and Leamy, H.J., “Laser and Electron Beam Processing of Materials,” (eds. White, C.W. and Peercy, P.S.), pp. 227233, Academic Press, NY (1980).CrossRefGoogle Scholar
11. Cullis, A.G., Webber, H.C., Chew, N.G., Poate, J.M., and Baeri, P., Phys. Rev. Lett. 49, 219 (1982).CrossRefGoogle Scholar
12. Thompson, M.O., Galvin, G.J., Mayer, J.W., Peercy, P.S., Poate, J.M., Jacobson, D.C., Cullis, A.G., and Chew, N.G., Phys. Rev. Lett. 52, 2360 (1984).CrossRefGoogle Scholar
13. Thompson, M.O., Bucksbaum, P.H., and Bokor, J., Mat. Res. Soc, Symp. Proc. 35, 181 (1985).CrossRefGoogle Scholar
14. Bucksbaum, P.H. and Bokor, J., Phys. Rev. Lett. 53, 182 (1984).CrossRefGoogle Scholar
15. Spaepen, F. and Turnbull, D., Am. Inst. Phys. Conf. Proc. 50, 50 (1979).Google Scholar
16. Bagley, B.G. and Chen, H.S., Am. Inst. Phys. Conf, Proc, 50, 97 (1979),Google Scholar
17. Paul, W., Connell, G.A.N., and Temkin, R.J., Ady. Phys. 22, 529 (1973).Google Scholar
18.a) Etherington, G., Wright, A.C., Wenzel, J.T., Dore, J.C., and Clarke, J.H., J. Non-Cryst. Solids 48, 265 (1982);CrossRefGoogle Scholar
b) Wright, A.C., J. Non-Cryst. Solids 75, 15 (1985).CrossRefGoogle Scholar
19. Chen, H.S. and Turnbull, D., App, J., Phys. 40, 4214 (1969).Google Scholar
20. Lytle, F.W., Sayers, D.E., and Eikum, A.K., J. Non-Cryst. Solids 13, 68 (1973).CrossRefGoogle Scholar
21. Temkin, R.J. and Paul, W., Proc. V-th Int. Conf. on Amorphous Semiconductors (ed. Stuke, J. and Brenig, W.), pp. 11931200, Taylor and Francis (1974).Google Scholar
22. Lannin, J.S., Maley, N., and Khirsagar, S.T., Sol. State Comm. 53, 939 (1985).CrossRefGoogle Scholar
23. Waddell, C.N., Spitzer, W.G., Frederickson, J.E., Hubler, G.K., and Kennedy, T.A., J. Appl. Phys. 55, 4361 (1984).CrossRefGoogle Scholar
24. Maley, N., Lannin, J.S., and Cullis, A.G., Phys. Rev. Lett. 53, 1571 (1984).CrossRefGoogle Scholar
25. Prokes, S.M. and Spaepen, F., Appl. Phys. Lett. 47, 234 (1985)CrossRefGoogle Scholar
26. Wooten, F. and Weaire, D., Non-Cryst, J., Solids 644, 325 (1984).Google Scholar
27. Turnbull, D. and Cech, R.E., J. Appl. Phys. 21, 804 (1950),CrossRefGoogle Scholar
28. Powell, G.L.F., Trans. Met. Soc. A.I.M.E. 239, 1662 (1967).Google Scholar
29. Devaud, G. and Turnbull, D., Mats. Res. Soc. Proc,, in press.Google Scholar
30. Devaud, G. and Turnbull, D., Appl, Phys. Lett. 46, 844 (1985).CrossRefGoogle Scholar
31. Cullis, A.G., Webber, H.C. and Chew, N.G., Appl, Phys. Letters 40, 998 (1982).CrossRefGoogle Scholar
32.a) Liu, P.L., Yen, R., Bloembergen, N., and Hodgson, R.T., Appl. Phys. Lett. 34, 864 (1979);CrossRefGoogle Scholar
b) Liu, J.M., Yen, R., Kurz, H., and Bloembergen, N., Appl. Phys. Lett. 39, 755 (1981).CrossRefGoogle Scholar
33. Tsu, R., Hodgson, R.T., Tan, T.Y., and Baglin, J.E.E., Phys. Rev. Lett. 42, 1356 (1979).CrossRefGoogle Scholar
34. Ohdomari, I., Kakumu, M., Sugahara, H., Hori, M., and Saito, T., J. Appl. Phys. 52, 6617 (1981).CrossRefGoogle Scholar
35. Jackson, K.A., “Growth and Perfection of Crystals” (ed. Doremus, R.H., Roberts, B.W. and Turnbull, D.), pp, 319325, Wiley, NY (1958).Google Scholar
36. Larson, B.C., Tischler, J.Z., and Mills, D.M., “Nanosecond Resolution Time-Resolved X-Ray Study of Si During Pulsed-Laser Irradiation,” to be published.Google Scholar
37. Williams, J.S., Elliian, R.G., Brown, W.L., and Seidel, T.E., Phys. Rev, Lett. 55, 1482 (1985).CrossRefGoogle Scholar
38.a) Vechten, J.A. Van, “Lattice Defects in Semiconductors,” 212, Inst. of Phys., London (1975);Google Scholar
b) Vechten, J.A. Van and Thurmond, C.D., Phys, Rev. 14B, 3539 (1976).CrossRefGoogle Scholar
39. Suni, I., Goltz, G., Grinaldi, M.G., Nicolet, M.A., and Lau, S.S., Appl, Phys. Lett. 40, 269 (1982).CrossRefGoogle Scholar
40. Mosley, L., Germain, P.J., Paessler, M.A., and Zellema, K., J. Non-Cryst. Solids 59–60, 273 (1983).CrossRefGoogle Scholar
41. Mosley, L.E. and Paessler, M.A., Appl, J., Phys. 57, 2328 (1985).Google Scholar
42. Simmons, R.O. and Balluffi, R.W., Phys. Rev. 117, 52, 62 1960; ibid. 119, 600 (1960).CrossRefGoogle Scholar
43. Nygren, E., Aziz, M.J., Turnbull, D., Poate, J.M., Jacobson, D.C., and Hull, R., Appl. Phys. Lett. 47, 232 (1985).CrossRefGoogle Scholar
44. Fratello, V.J., Hays, J.F., and Turnbull, D., J. Appl. Phys. 51, 4718 (1980).CrossRefGoogle Scholar
45. Fratello, V.J., Hays, J.F., Spaepen, F., and Turnbull, D., J. Appl. Phys. 51, 6160 (1980).CrossRefGoogle Scholar