Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-28T22:14:42.051Z Has data issue: false hasContentIssue false

Transport Properties of Bi-related Nanowire Systems

Published online by Cambridge University Press:  17 March 2011

Y. M. Lin
Affiliation:
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
S. B. Cronin
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
J. Y. Ying
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
J. Heremans
Affiliation:
Delphi Research Labs, Delphi Automotive Systems, Warren, MI 48090
M. S. Dresselhaus
Affiliation:
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 On leave from the Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

We present here an electrical transport property study of Te-doped Bi nanowires, and Bi1−xSbx alloy nanowires embedded in a dielectric matrix. The crystal structure of the nanowires were characterized by X-ray diffraction measurements, indicating that the nanowires possess the same lattice structure as bulk Bi in the presence of a small amount of Te or Sb atoms. The resistance measurements of 40-nm Te-doped Bi nanowires were performed over a wide range of temperature (2 K≤ T ≤ 300 K), and the results are consistent with theoretical predictions. The 1D-to-3D localization transition and the boundary scattering effect are both observed in magneto-resistance measurements of Bi1−xSbx alloy nanowires at low temperatures (T < 4 K).

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47 12727 (1993).Google Scholar
2. Lin, Y.-M., Sun, X. and Dresselhaus, M. S., Phys. Rev. B 62 4610 (2000).Google Scholar
3. Heremans, J., Thrush, C. M., Lin, Yu-Ming, Cronin, S., Zhang, Z., Dresselhaus, M. S. and Mansfield, J. F., Phys. Rev. B 61 2921 (2000).Google Scholar
4. Lin, Y.-M., Cronin, S. B., Ying, J. Y., Dresselhaus, M. S., and Heremans, J. P., Appl. Phys. Lett. 76 3944 (2000).Google Scholar
5. Goldsmid, H. J., Phys. Stat. Sol. (a) 1 7 (1970).Google Scholar
6. Lenoir, B., Dauscher, A., Devaux, X., Martin-Lopez, R., Ravich, Yu. I., Scherrer, H. and Scherrer, S., in Proceedings of the 15th International Conference on Thermoelectrics (IEEE, 1996), pp. 1.Google Scholar
7. Dresselhaus, M. S., J. Phys. Chem. Sol. 32, Suppl. 1, 3 (1971).Google Scholar
8. Koga, T., Sun, X., Cronin, S. B. and Dresselhaus, M. S., Appl. Phys. Lett. 73 2950 (1998).Google Scholar
9. Keller, F., Hunter, M. S., Robinson, D. L., J. Electrochem. Soc. 100 411 (1953).Google Scholar
10. Li, F. Y., Zhang, L., Metzger, R. M., Chem. Mater.z 10 2470 (1998).Google Scholar
11. Zhang, Z., Ying, J. Y. and Dresselhaus, M. S., J. Mater. Res. 13 1745 (1998).Google Scholar
12. Heremans, J., Thrush, C. M., Zhang, Z., Sun, X., Dresselhaus, M. S., Ying, J. Y. and Morelli, D. T., Phys. Rev. B, 58, R10091 (1998).Google Scholar
13. Zhang, Z., Sun, X., Dresselhaus, M. S., Ying, J. Y. and Heremans, J., Phys. Rev. B 61 4850 (2000).Google Scholar