Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-15T03:28:41.089Z Has data issue: false hasContentIssue false

Ultra sensitive Bio-Chemical sensors Based on Optical Resonance

Published online by Cambridge University Press:  01 February 2011

Shalini Prasad*
Affiliation:
sprasad@pdx.edu, Portland State Univerity, ECE, 160-11, FAB 1900 SW 4th Ave, Portland, OR, 97201, United States, 503-725-3223
Get access

Abstract

With the focus on bio terrorism and environmental sensing, there is need for development of smart integrated bio-chemical sensors. We investigate Whispering Gallery Mode (WGM) based High Q micro cavity as a biosensor. We integrate the lab-on-a-chip approach with High Q technology to develop highly selective and smart sensors for in-situ detection of aqueous media based agents. We have investigated the ring based micro-cavity structure as a sensor. We identify the detection of agent through the changes observed in the wavelength shift and Q factor as a result of enzyme-substrate interactions. We report an experimental demonstration of a compact micro-cavity based biochemical sensor based on the micro ring structure. The micro-cavity, fabricated on a silica-on-silicon substrate, is designed to have a resonant wavelength (l) near 1.34 μm. The transmission spectrum of the sensor is measured with different ambient refractive indices ranging from n =1.0 to 1.5. Chemical detection was achieved by measuring the shift in resonant wavelength, and variation to the quality factor

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Malmqvist, M., Nature 361, 186 (1993).Google Scholar
2. Lowe, P. A., Clark, T. J., Davies, R. J., Edwards, P. R., Kinning, T., and Yeung, D., J. Mol. Recognit. 11, 194 (1998).Google Scholar
3. Rich, R. L. and Myszka, D. G., Curr. Opin. Biotechnol. 11, 54 (2000).Google Scholar
4. Malmqvist, M. and Karlsson, R., Curr. Opin. Chem. Biol. 1, 378 (1997).Google Scholar
5. Mendelsohn, A. R. and Brent, R., Science 284, 1948 (1999).Google Scholar
6. Serpenguezel, A., Arnold, S., and Griffel, G., Opt. Lett. 20, 654 (1994).Google Scholar
7. Zammatteo, N., Jeanmart, L., Hamels, S., Courtois, S., Louette, P., Hevesi, L., and Remacle, J., Anal. Biochem. 280, 143 (2000).Google Scholar
8. Vollmer, F., Braun, D., and Libchaber, A., Appl. Phys. Lett. 80(21), 4057(2002)Google Scholar
9. Padigi, S.P., Reddy, R.K. and Prasad, S., Biosens. Bioelectron. (in review) (2005)Google Scholar
10. Mendelsohn, A. R., Brent, R., Science 284, 1948 (1999).Google Scholar
11. Bartlett, M., and Yan, M., Adv. Mater. 13, 1449. (2001).Google Scholar
12. Griffel, G., Arnold, S., Taskent, D., Serpenguezel, A., Connolly, J., and Morris, N., Opt. Lett. 21, 695(1996).Google Scholar
13. Urzua-Sanchez, O., Licea-Claverie, A., Gonzalez, J., Cota, L. and Castillon, F. Polym. Bull. 49, 39 (2002).Google Scholar
14. Lin, J., Siddiqui, J. A. and Ottenbrite, R. M. Polym. Adv. Technol. 12, 285 (2001)Google Scholar
15. Liu, Y. L., Hsu, C. Y., Wang, M. L., Chen, H. S., Nanotechnology 14, 813 (2003)Google Scholar
16. Laine, J. P., Little, B.E., and Haus, H.A., IEEE Photonics Technol. Lett. 11, 1429 (1999)Google Scholar
17. Karlsson, R., and Stahlberg, R., Anal. Biochem. 228, 274 (1995)Google Scholar
18. Armani, D. K., Kippenberg, T. J., Spillane, S. M. and Vahala, K. J.. Nature. 421, 925 (2003).Google Scholar
19. Liang, S.C.Y., and Ansari, F., IEEE, OSA, Journal of Lightwave Engineering, 22(2), 487 (2004)Google Scholar