Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-16T19:41:02.561Z Has data issue: false hasContentIssue false

Ultrafast Laser Superheating of Metal Surfaces

Published online by Cambridge University Press:  25 February 2011

H. E. Elsayed
Affiliation:
University of Rochester, Laboratory for Laser Energetics, 250 East River Road, Rochester, NY 14623–1299
J. W. Herman
Affiliation:
University of Rochester, Laboratory for Laser Energetics, 250 East River Road, Rochester, NY 14623–1299
E. A. Murphy
Affiliation:
University of Rochester, Laboratory for Laser Energetics, 250 East River Road, Rochester, NY 14623–1299
Get access

Abstract

Reflection high-energy electron diffraction with ∼200-ps temporal resolution is used to study the structural dynamics of the closed-packed surfaces of single crystals of lead and bismuth subjected to ultrafast laser heating. By monitoring the temporal evolution of the diffraction streak intensity, information is obtained on the mean-square vibrational amplitude of the surface atoms and the structural integrity of the surface. Pb(lll) is observed to superheat by ∼120 k above the bulk melting point. With increased heating laser intensity, melting is observed to occur subsequent to superheating. Superheating of Bi(0001) by ∼85 K was also observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tammann, G., Z. Phys. Chem. 72, 609 (1910).Google Scholar
2. van der Veen, J. F., Pluis, B., Denier van der Gon, A. W., in Chemistry and Physics of Solid Surfaces VII, edited by Vanselow, R. and Howe, R. F. (Springer-Verlag, Berlin, 1988), p. 455.Google Scholar
3. Frenken, J. W. M. and van der Veen, J. F., Phys. Rev. Lett. 54, 134 (1985);Google Scholar
Frenken, J. W. M., Maree, P. M. J., and van der Veen, J. F., Phys. Rev. B 34, 7506 (1986).Google Scholar
4. Ainslie, N. G., MacKenzie, J. D., and Turnbull, D., J. Phys. Chem. 65, 1718 (1961);CrossRefGoogle Scholar
Cormia, R. L., MacKenzie, J. D., and Turnbull, D., J. Appl Phys. 34, 2239 (1963).CrossRefGoogle Scholar
5. Uhlmann, D. R., J. Non-Cryst. Solids 41, 347 (1980).Google Scholar
6. MacDonald, C. A., Malvezzi, A. M., and Spaepen, F., J. Appl Phys. 65, 129 (1989).Google Scholar
7. Tyndall, J., Proc. Roy. Soc. 9, 76 (1858).Google Scholar
8. Woodruff, D. P., The Solid-Liquid Interface (Cambridge University Press, London, 1973).Google Scholar
9. Kaykin, S. E. and Bene, N. P., C. R. Acad. Sci. USSR 23, 31 (1939).Google Scholar
10. Baikov, A. P. and Shestak, A. G., Sov. Tech Phys. Lett. 5, 569 (1979).Google Scholar
11. Daeges, J., Gleiter, H., and Perepezko, J. H., Phys. Lett. A 119, 79 (1986).Google Scholar
12. Peppiatt, S. J., Proc. R. Soc. London A 345, 401 (1975).Google Scholar
13. Spiller, G. D. T., Philos. Mag. A 46, 535 (1982).Google Scholar
14. Métois, J. J. and Heyraud, J. C., J. Phys. (Paris) 50, 3175 (1989).Google Scholar
15. Herman, J. W. and Elsayed-Ali, H. E., Phys. Rev. Lett. 69, 1228 (1992).Google Scholar
16. Herman, J. W. and Elsayed-Ali, H. E., Phys. Rev. Lett. 68, 2952 (1992).CrossRefGoogle Scholar
17. Elsayed-ali, H. E. and Mourou, G. A., Appl Phys. Lett. 52, 103 (1988);CrossRefGoogle Scholar
Elsayed-Ali, H. E. and Herman, J. W., Rev. Sci. Instrum. 61, 1636 (1990).CrossRefGoogle Scholar
18. Wallis, R. F., Clark, B. C., and Herman, R., in The Structure and Chemistry of Solid Surfaces, edited by Somorjai, G. A. (Wiley, New York, 1969) p. 17–1.Google Scholar
19. Elsayed-Ali, H. E. and Herman, J. W., Appl Phys. Lett. 57, 1508 (1990).Google Scholar