Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-20T03:44:18.554Z Has data issue: false hasContentIssue false

Ultrathin Tantalum Pent-Oxide Films for Ulsi Gate Dielectrics

Published online by Cambridge University Press:  10 February 2011

Yasushiro Nishioka*
Affiliation:
Texas Instruments Tsukuba Research and Development Center Limited 17 Miyukigaoka, Tsukuba, Ibaraki, Japan305-0084
Get access

Abstract

Ultrathin tantalum pent-oxide (Ta2O5) films with a high dielectric constant over 20 and which are thinner than 10 nm have been extensively studied to realize small area capacitors for memories and high performance MOSFETs. The author and his colleagues started working on ultrathin Ta2O5 films with an equivalent oxide film thickness less than 4 nm for small capacitors for bipolar memories and DRAMS in 1984, and investigated extensively the effects of dry oxygen annealing of sputter-deposited thin Ta2O5 films on Si. We found that there was a process window (dry O2, 800 °C) where defects causing initial and latent breakdown were significantly reduced and where at the same time the reduction in the capacitance inevitably caused by the growth of interfacial SiO2 is kept small. This dry O2 annealing has been widely used for many years due to its effectiveness. This treatment was called “weak spot oxidation.” The interfacial SiO2, with a smaller dielectric constant of 3.9, underneath the Ta2O5 films causes a reduction of the capacitance and an increase of the equivalent film thickness. Annealing of the films after deposition and suppression of the interfacial SiO2 growth are the keys to realizing high performance and reliable Ta2O5 capacitors and gate insulators. In this paper, these fundamental processes are described, along with more recent developments of Ta2O5 thin film technologies, and the potential of the Ta2O5 films as an alternative for a future ULSI gate insulator are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Momose, H.S., Ono, M., Ohguro, T., Nakamura, S., Saito, M., and Iwai, H., IEDM Tech. Dig. p. 593, 1994.Google Scholar
2 Timp, G., Agawal, A., Baumann, F.H., Boone, T., Buonanno, M., Cirelli, R., Donnely, V., Foad, M., Grant, G., Green, M., Gossman, H., Hillenisu, S., Jackson, J., Jacobson, D., Kleiman, R., Kornblit, A., Klemens, F., Lee, J.T.-C., Mansfiield, W., Moccio, S., Murrel, A., O'Malley, M., Rosamilia, J., Sapjeta, J., Siverman, P., Sorsh, T., Tai, W.W., Tennant, D., Vuong, H., and Weir, B., IEDM Tech. Dig. p. 930, 1997.Google Scholar
3 Iwai, H. and Momose, H.S., IEDM Tech. Dig., p. 163, 1998.Google Scholar
4 Stathis, J. H. and DiMalia, D.J., IEDM Tech. Dig., p.163, 1998.Google Scholar
5 Kamiyama, S., Saeki, T., Mori, H., and Numasawa, Y., IEDM Tech. Dig., p.827, 1991.Google Scholar
6 Luan, H.F., Wu, B.Z., Kang, L.G., Kim, B.Y., Vrtis, R., Roberts, D., and Kwong, D.L., IEDM Tech. Dig., p. 609.Google Scholar
7 Nishioka, Y., Homma, H., Shinriki, H., Mukai, K., Yamaguchi, K., Uchida, A., Higeta, K., and Ogiue, K., IEDM Tech. Dig., p.42, 1985.Google Scholar
8 Homma, N., Yamaguchi, K., Nambu, H., Kanetani, K., Nishioka, Y., Uchida, A., and Ogiue, K., IEEE J. of Solid-State Circuits, SC–21, p. 675, 1986.10.1109/JSSC.1986.1052594Google Scholar
9 Nishioka, Y., Homma, H., Shinriki, H., Mukai, K., Yamaguchi, K., Uchida, A., Higeta, K., and Ogiue, K., IEEE Trans. Electron Devices, ED–34, 1957, 1987.10.1109/T-ED.1987.23181Google Scholar
10 Shinriki, H. and Nakata, M., IEEE Trans. Electron Devices, 38, p. 455, 1991.10.1109/16.75185Google Scholar
11 Kaga, T., Kure, T., Shinriki, H., Kawamoto, Y., Murai, F., Nishida, T., Nakagome, Y., Hashimoto, D., Kisu, T., Takeda, E., and Itoh, K., IEEE Trans. Electron Devices, 38, p. 255, 1991.10.1109/16.69903Google Scholar
12 Ohji, Y, Matsui, Y., Itoga, T., Hirayama, M., Sugawara, Y., Torii, K., Miki, H., Nakata, M., Asano, I., Iijima, S., and Kawamoto, Y., IEDM Tech. Dig. p. 111, 1995.Google Scholar
13 Kaga, T., Sudoh, Y., Goto, H., Shoji, K., Kisu, T., Yamashita, H., Nagai, R., Iijima, S., Ohkura, M., Murai, F., Tanaka, T., Goto, Y., Yokoyama, N., Horiguchi, M., Isoda, M., Nishida, T., and Takeda, E., IEDM Tech. Dig., p. 927, 1994.Google Scholar
14 Nakata, M. and Shinriki, H., Extended Abstract of SSDM, p. 545, 1987.Google Scholar
15 Shinriki, H., Kisu, T., Kimura, S., Nishioka, Y., Kawamoto, Y., and Mukai, K., IEEE Trans. Electron Devices, 37, p. 1939, 1990.10.1109/16.57154Google Scholar
16 Momiyama, Y., Minakawa, H., and Sugii, T., Symp. on VLSI Tech. Dig., p. 135, 1997.Google Scholar
17 Kizilyalli, I.C., Roy, P.K., Baumann, F., Huang, R.Y., Hwang, D., Chacon, C., Irwin, R., Ma, Y., and Alers, G., Symp. on VLSI Tech. Dig., p. 216, 1998.Google Scholar
18 Park, D., Lu, Q., King, T.J., Hu, C., IEDM Tech. Dig., p. 381, 1998.Google Scholar
19 Chatterjee, A., Chapman, R.A., Joyner, K., Otobe, M., Hattangady, S., Bevan, M., Brown, G.A., Yang, H., He, Q., Rogers, D., fang, S.J., Kraft, R., Rotondaro, A.L.P., Terry, M., Brenan, K., Aur, S.W., Hu, J.C., Tsai, H.L., Jones, P., Wilk, G., Aoki, M., Rodder, M., and Chen, I.C., IEDM Tech. Dig., p. 777, 1998.Google Scholar
20 Kimura, S., Nishioka, Y., Shintani, A., and Mukai, K., J. Electrochem. Soc., 130, p. 2414, 1983.10.1149/1.2119599Google Scholar
21 Nishioka, Y., Kimura, S., and Mukai, K., Extended Abstracts of the 165th Electrochemical Society Meeting, p. 190, 1984.Google Scholar
22 Nishioka, Y., Kimura, S., Shinriki, H., and Mukai, K., J. Electrochem. Soc., 134, p.410, 1987.10.1149/1.2100469Google Scholar
23 Nishioka, Y., Shinriki, H., and Mukai, K., J. Applied Physics, 61, p. 2335, 1987.10.1063/1.337945Google Scholar
24 Nishioka, Y., Shinriki, H., and Mukai, K., J. Electrochem. Soc., 136, p. 872, 1989.10.1149/1.2096760Google Scholar