Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-30T05:26:03.895Z Has data issue: false hasContentIssue false

The Use of Low Temperature AlInAs and GalnAs Lattice Matched to InP in the Fabrication of HBTs and HEMTs

Published online by Cambridge University Press:  15 February 2011

R. A. Metzger
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Rd., Malibu CA 90265
A. S. Brown
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Rd., Malibu CA 90265
R. G. Wilson
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Rd., Malibu CA 90265
T. Liu
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Rd., Malibu CA 90265
W. E. Stanchina
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Rd., Malibu CA 90265
L. D. Nguyen
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Rd., Malibu CA 90265
A. E. Schmitz
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Rd., Malibu CA 90265
L. G. McCray
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Rd., Malibu CA 90265
J. A. Henige
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Rd., Malibu CA 90265
Get access

Abstract

AlInAs and GaInAs lattice matched to InP and grown by MBE over a temperature range of 200 to 350°C (normal growth temperature of 500°C) has been used to enhance the device performance of inverted (where the donor layer lies below the channel) High Electron Mobility Transistors (HEMTs) and Heterojunction Bipolar Transistors (HBTs), respectively. We will show that an AlInAs spacer grown over a temperature range of 300 to 350°C and inserted between the AlInAs donor layer and GaInAs channel significantly reduces Si movement from the donor layer into the channel. This produces an inverted HEMT with a channel charge of 3.0×1012 cm−2 and mobility of 9131 cm2/V-s, as compared to the same HEMT with a spacer grown at 500 °C resulting in a channel charge of 2.3×1012 cm−2 and mobility of 4655 cm2/V-s. We will also show that a GaInAs spacer grown over a temperature range of 300 to 350°C and inserted between the AlInAs emitter and GalnAs base of an npn HBT significantly reduces Be movement from the base into the emitter, thereby allowing higher Be base dopings (up to 1×1020 cm−3) confined to 500 Å base widths, resulting in an AlInAs/GaInAs HBT with an fmax of 73 GHz and ft of 110 GHz.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Brown, A.S., Mishra, U.K., Henige, J.A. and Delaney, M.J., J. Vac. Sci. Technol. B, 678 (1988).Google Scholar
2.Kawamura, Y., Wakha, K. and Asahi, H., in: Proc. 12th Intern. Syp. On GaAs and Related Compounds, Kaauizawa, 1985, Inst. Phys. Conf. Ser. 79, Ed. M.Fujimoto (Inst. Phys., London-Bristol, 1986), 451.Google Scholar
3.Brown, A.S., Mishra, U.K., Chou, C.S., Hooper, W.E., Melendes, M.A., Thompson, M., Larson, L.W., Rosenbaum, S.E., and Delaney, M.J., IEEE Electron Device Let. EDL–10, 565 (1989).Google Scholar
4.Smith, F.W., Chen, C.L., Turner, G.W., Finn, M.C., Mahoney, L.J., Manfra, M.J., and Calawa, A.R., in: IEDM Tech. Digest, 1988, pg. 838.Google Scholar
5.Smith, F.W., Calawa, A.R., Chen, C.L., Manfra, M.M., and Mahoney, L.J., IEEE Electron Device Let. EDL–9, 77 (1988).Google Scholar
6.Metzger, R.A., Brown, A.S., Stanchina, W.E., Lui, M., Wilson, R.G., Kargodorian, T.V., McCray, L.G., and Henige, J.A., J. Cryst. Growth 111, 445 (1991).Google Scholar
7.Stanchina, W.E., Metzger, R.A., Jensen, J.F., Rensch, D.B., Pierce, M.W., Delaney, M.J., Wilson, R.G., Kargodorian, T.V., and Allen, Y.K., 1990 InP and Related Materials Conf. Proc. 13 (1990).Google Scholar
8.Brown, A.S., Nguyen, L.D., Matloubian, M., Schmitz, A.E., Lui, M., Wilson, R.G., and Henige, J.A., presented at the 18th Annual GaAs and Related Compounds Conference, Seattle, WA, 1991.Google Scholar
9.Brown, A.S., Metzger, R.A., Nguyen, L.D., Wilson, R.G., and Henige, J.A., accepted for publication to Appl. Phys. Lett.Google Scholar
10.Brown, A.S., Nguyen, L.D., Metzger, R.A., Schmitz, A.E., and Henige, J.A., accepted for publication to J. Vac. Sci. Technol.Google Scholar
11.Metzger, R.A., Liu, T., Stanchina, W.E., Wilson, R.G., Jensen, J.F., McCray, L.G., Pierce, M.W., Kargodorian, T.V., Allen, Y.K., and Lou, P.F., accepted for publication to J. Vac. Sci. Technol.Google Scholar
12.Brown, A.S., Mishra, U.K., Henige, J.A., and Delaney, M.J., J. Appl. Phys. 64, 3476 (1988).Google Scholar
13.Nguyen, L., Jelloian, L., Thompson, M., and Lui, M., IEDM, San Francisco, CA, 1990.Google Scholar
14.Schmitz, A.E., Nguyen, L.D., Brown, A.S., and Metzger, R.A., 1991 DRC, Boulder, CO.Google Scholar
15.Jensen, J.F., Stanchina, W.E., Metzger, R.A., Rensch, D.B., Lohr, R.F., Quen, R.W., Pierce, M.W., Allen, Y.K., and Lou, P.F., IEEE J. Solid State Circuits 26, 38 (1991).Google Scholar