Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-01T23:18:00.276Z Has data issue: false hasContentIssue false

The Use of Superlattices to Block the Propagation of Dislocations in Semiconductors

Published online by Cambridge University Press:  25 February 2011

A.E. Blakeslee*
Affiliation:
Solar Energy Research Institute, Golden, CO 80401
Get access

Abstract

Since the discovery in 1973 that GaAs/GaAsP superlattices can be grown with low dislocation densities, considerable interest has developed in utilizing superlattices as dislocation filters in multilayer semiconductor device structures. Many attempts to implement this process have been described, with varying degrees of success being achieved. Some investigators have reported favorable results; some have observed no effect; and in some cases the situation was actually made worse. This paper analyzes these reports and attempts to clarify the confusion that has arisen. Suggestions are made for improved effectiveness. Factors considered include the strain between layers, the layer thickness, the concept of critical thickness, the dislocation geometry, and the influence of buffer layers and growth conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Matthews, J. W., Phil. Mag. 13, 1207 (1966).CrossRefGoogle Scholar
2. Matthews, J. W. and Jesser, W. A., Acta. Met. 15, 595 (1967).Google Scholar
3. Matthews, J. W., Mader, S. and Light, T. B., I. Appl. Phys. 41, 3800 (1970).CrossRefGoogle Scholar
4. Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth: 27, 118 (1974); 29, 273 (1975); 32, 265 (1976).Google Scholar
5. Blakeslee, A. E., J. Electrochem. Soc. 118, 1459 (1971).CrossRefGoogle Scholar
6. Matthews, J. W., Blakeslee, A. E. and Mader, S., Thin Solid Films 33, 253 (1976).Google Scholar
7. Olsen, G. H., Abrahams, M. S. and Zamerowski, T. J., J. Electrochem. Soc. 121, 1650 (1974).Google Scholar
8. Maree, P. M. J., Barbour, J. C., Veen, J. F. van der, Kavanagh, K. L., Bulle-Lieuwma, C. W. T. and Viegers, M. P. A., J. Appl. Phys. 62, 4413 (1987).Google Scholar
9. Osbourn, G. C., Gourley, P. L., Fritz, I. J., Biefeld, R. M., Dawson, L. R. and Zipperian, T. E. in Semiconductors and Semimetals, Vol. 24, edited by Dingle, R. (Academic Press, New York, 1987) pp. 459503 and references therein.Google Scholar
10. Fitzgerald, E. A., Watson, G. P., Proano, R. E., Ast, D. G., Kirchner, P. D., Pettit, G. D. and Woodall, J. M., J. Appl. Phys. 65, 2220 (1989) and references therein.CrossRefGoogle Scholar
11. Bedair, S. M., Humphreys, T. P., EI-Masry, N. A., Lo, Y., Hamaguchi, N., Lamp, C. D., Tuttle, A. A., Dreifus, D. L. and Russell, P., Appl. Phys. Lett. 49, 942 (1986).CrossRefGoogle Scholar
12. AI-Jassim, M. M., Nishioka, T., Itoh, Y., Yamamoto, A. and Yamaguchi, M. in Heteroepitaxy on Silicon: Fundamentals, Structure and Devices, edited by Choi, H. K. et al. (Mater. Res. Soc. Proc. 116, Pittsburgh, PA 1988), pp. 141–6.Google Scholar
13. EI-Masry, N. A., Tarn, J. C. and Karam, N., J. Appl. Phys. 64, 3672 (1988).CrossRefGoogle Scholar
14. Cao, D. S., Chen, C. H., Fry, K. L., Reihlen, E. H. and Stringfellow, G. B., J. Appl. Phys. 65, 2451 (1989).Google Scholar
15. Dupuis, R. D., Bean, J. C., Brown, J. M., Macrander, A. T., Miller, R. C. and Hopkins, L. C., J. Electron. Mater. 16, 69 (1987).CrossRefGoogle Scholar
16. Frank, F. C. and Merwe, J. H. van der, Proc. Roy. Soc. (London) A198, 216 (1949).Google Scholar
17. Matthews, J. W., J. Vac. Sci. Technol. 12, 126 (1975).Google Scholar
18. Merwe, J. H. van der and Jesser, W. A., J. Appl. Phys. 63, 1509 (1988).Google Scholar
19. Mader, S., Blakeslee, A. E. and Angilello, J., J. Appl. Phys. 45, 4730 (1974).Google Scholar
20. Abrahams, M. S., Weisberg, L. R., Buiocchi, C. J., and Blanc, J., J. Mater. Sci. 4, 223 (1969).CrossRefGoogle Scholar
21. Booker, G. R., Titchmarsh, J. M., Fletcher, J., Darby, D. B., Hockly, M. and Al-Jassim, M., J. Cryst. Growth 45, 407 (1978).Google Scholar
22. Eaglesham, D. J., Aindow, M. and Pond, R. C. in Heteroepitaxy on Silicon: Fundamentals, Structure and Devices, edited by Choi, H. K. et al. (Mater. Res. Soc. Proc. 116, Pittsburgh, PA 1988) pp. 267–72.Google Scholar
23. Fischer, R., Morkoc, H., Neumann, D. A., Zabel, H., Choi, C., Otsuka, N., Longerbone, M. and Erickson, L. P., J. Appl. Phys. 60, 1640 (1986).CrossRefGoogle Scholar
24. Lee, J. W., Shichijo, H., Tsai, H. L. and Matyi, R. J., Appl. Phys. Lett. 50, 31 (1987).Google Scholar
25. Dodson, B. W. in Heteroepitaxy on Silicon: Fundamentals, Structure and Devices, edited by Choi, H. K. et al. (Mater. Res. Soc. Proc. 116, Pittsburgh, PA 1988) pp. 491503.Google Scholar
26. Bean, J. C., Feldman, L. C., Fiory, A. T., Nakahara, S. and Robinson, I. K., J. Vac. Sci. Technol. A2, 436 (1984).Google Scholar
27. Yamaguchi, M., Nishioka, T. and Sugo, M., Appl. Phys. Lett. 54, 24 (1989).Google Scholar
28. Olson, J. M., Blakeslee, A. E. and Al-Jassim, M. in Cominund Semiconductor Strained-Layer Superlattices, edited by Biefield, R. M. (Trans. Tech. Publ., Aedermannsdorf, 1988) in press.Google Scholar
29. Rozgonyi, G. A., Petroff, P. M. and Panish, M. B., Appl. Phys. Lett. 24, 251 (1974).CrossRefGoogle Scholar
30. Dupuy, M. and Lafeuille, D., J. Cryst. Growth 31, 244 (1975).Google Scholar
31. Olsen, G. H., Abrahams, M. S., Buiocchi, C. J. and Zamerowski, T. J., J. Appl. Phys. 46, 1643 (1975).Google Scholar
32. Blakeslee, A. E., AI-Jassim, M. M., Olson, J. M. and Jones, K. M. in Heteroepitaxyon Silicon: Fundamentals, Structure, and Devices, edited by Choi, H. K. et al.(Mater. Res. Soc. Proc. 116, Pittsburgh, PA 1988) p. 313–8.Google Scholar