Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-10T12:31:59.887Z Has data issue: false hasContentIssue false

Uv Absorption Spectra and Photolysis of Some Group II and Group VI Alkyls

Published online by Cambridge University Press:  21 February 2011

S. J. C. Irvine
Affiliation:
Royal Signals and Radar Establishment St Andrews Road, Malvern, Worcs., U.K.
J. B. Mullin
Affiliation:
Royal Signals and Radar Establishment St Andrews Road, Malvern, Worcs., U.K.
D. J. Robbins
Affiliation:
Royal Signals and Radar Establishment St Andrews Road, Malvern, Worcs., U.K.
J. L. Glasper
Affiliation:
Royal Signals and Radar Establishment St Andrews Road, Malvern, Worcs., U.K.
Get access

Abstract

A preliminary study has been made of the UV photolysis of metal-organic compounds of Hg, Cd and Te which could be used for low-temperature, selective-area deposition of cadmium mercury telluride (CMT). High-resolution UV absorption spectra have been measured for dimethylcadmium (CdMe2), dimethylmercury (HgMe2) and diethyltelluride (TeEt2). Possible modes for photodissociation are discussed in the light of these results. The photodissociation of these alkyls was attempted in a hydrogen stream at atmospheric pressure using a mercury-xenon lamp, deposition being being onto a silica reaction tube. Yields of Cd, Hg and Te were measured under different deposition conditions to determine the dependence on UV intensity, alkyl concentration and flow velocity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Irvine, S.J.C., Mullin, J.B., J. Crystal Growth 55 (1981) 107.CrossRefGoogle Scholar
2. Faurie, J.P., Million, A. and Piaguet, J., J. Crystal Growth 59 (1982) 10.CrossRefGoogle Scholar
3. Roussille, R., Guillot, S. and Lefeuvre, G., J. Crystal Growth 59 (1982) 130.CrossRefGoogle Scholar
4. Mullin, J.B., Irvine, S.J.C. and Ashen, D.J., J. Crystal Growth 55 (1981) 92.CrossRefGoogle Scholar
5. Mullin, J.B., Irvine, S.J.C., J. Vac. Sci. Technol 21 (1982) 178.CrossRefGoogle Scholar
6. Jonah, C., Chandra, P. and Bersohn, R., J. Chemical Physics, 55 (1971) 1903.Google Scholar
7. Ehrlich, J., Osgood, Richard M. Jr., and Deutsch, T. F., IEEE J. Quantum Electron QE- 16 (1980) 1233.CrossRefGoogle Scholar
8. Ehrlich, D. J. and Osgood, R. M. Jr., Chemical Physics Lett. 79 (1981) 381.CrossRefGoogle Scholar
9. Ehrlich, D. J. and Osgood, R. M. Jr., and Deutsch, T. F., J. Vac.Sci. Technol. 21 (1982) 23.CrossRefGoogle Scholar
10. Rytz-Froidevaux, Y., Salathé, R. P., Gilgen, H. H. and Weber, H. P. Appl. Phys. A 27 (1982) 133.CrossRefGoogle Scholar
11. Bakke, J., J. Mol. Spectrosc. 41 (1972) 1 Google Scholar
12. Bancroft, G. M., Creber, D. K. and Basch, H., J. Chem. Phys. 67 (1977) 4891.CrossRefGoogle Scholar
13. Creber, D. K. and Bancroft, G. M., Inorganic Chem. 19 (1980) 643.CrossRefGoogle Scholar