Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-09T20:35:10.011Z Has data issue: false hasContentIssue false

V2O5 and β-CuxV2O5 Thin Films Grown by Mocvd

Published online by Cambridge University Press:  15 February 2011

A. Gleizes
Affiliation:
E.N.S. Chimie de Toulouse (I.N.P.T.), Laboratoire “Cristallochimie, Réactivité et Protection des Matériaux”, 118 route de Narbonne, F-31077 Toulouse cedex 4, France, gleizes@cict.fr
J.-M. Bufforn
Affiliation:
E.N.S. Chimie de Toulouse (I.N.P.T.), Laboratoire “Cristallochimie, Réactivité et Protection des Matériaux”, 118 route de Narbonne, F-31077 Toulouse cedex 4, France, gleizes@cict.fr
C. Salzman
Affiliation:
E.N.S. Chimie de Toulouse (I.N.P.T.), Laboratoire “Cristallochimie, Réactivité et Protection des Matériaux”, 118 route de Narbonne, F-31077 Toulouse cedex 4, France, gleizes@cict.fr
E. Virette
Affiliation:
E.N.S. Chimie de Toulouse (I.N.P.T.), Laboratoire “Cristallochimie, Réactivité et Protection des Matériaux”, 118 route de Narbonne, F-31077 Toulouse cedex 4, France, gleizes@cict.fr
F. Senocq
Affiliation:
E.N.S. Chimie de Toulouse (I.N.P.T.), Laboratoire “Cristallochimie, Réactivité et Protection des Matériaux”, 118 route de Narbonne, F-31077 Toulouse cedex 4, France, gleizes@cict.fr
Get access

Abstract

Thin films of V2O5 and β-CuxV2O5 have been grown by MOCVD using VO(OiPr)3 and Cu(tmhd)2 (tmhd = tetramethylheptanedionato) as precursor molecules. Films were grown on chips of Si3N4 coated silicon wafers in a cold wall reactor using a H.F. heater. A mixture of helium and oxygen was used as a reactive carrier gas, and depositions were performed at low pressure. The films were examined by SEM, characterized by XRD, and analyzed by EDS and EMPA techniques. All the films proved to be carbon free.

For V2O5, the substrate temperature was varied from 450 to 630°C. The films are highly caxis oriented for both ends of the temperature range, and less oriented for intermediate temperatures. For 630°C, the XRD pattern consists almost entirely of reflections (001) and (002).

For β-CuxV2O5, the substrate temperature was varied from 450°C to 650°C. Pure β-phase films with x varying from 0.25 to 0.55 have been obtained above 500°C, by using well chosen gas phase composition. Morphology and texture depend dramatically on the temperature. The most oriented films exhibit a strong anisotropy of electrical surface conductivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wadsley, A. D., Acta Crystallogr. 8, 695 (1955).Google Scholar
2. Savariault, J.-M., Deramond, E. and Galy, J., Z.Krist. 209, 405 (1994).Google Scholar
3. Casalot, A., Deschanvres, A., Hagenmuller, P. and Raveau, B., Bull. Soc. Chim. Fr., 1730 (1965).Google Scholar
Galy, J., Casalot, A., Pouchard, M. and Hagenmuller, P., Bull. Soc. Fr. Minéral. Cristallogr. XC, 544 (1967).Google Scholar
Casalot, A., Thèse, d'Etat, Bordeaux (1968).Google Scholar
Galy, J., Darriet, J., Casalot, A., Goodenough, J. B., J.Solid State Chem. 1, 339 (1970).Google Scholar
Galy, J., Lavaud, D., Casalot, A., Hagenmuller, P., J. Solid State Chem. 2, 531 (1970).Google Scholar
4. Takahashi, Y., Kanamori, M., Hashimoto, H., Moritani, Y. and Masuda, Y., J. Mater. Sci. 24, 192 (1989).Google Scholar
5. Lachowitz, A., Höbold, W. and Thiele, K. H., Z. anorg. alig. Chem. 418, 65 (1975).Google Scholar
6. Hammond, G. S., Nonhebel, D. C., Wu, C. S., Inorg. Chem. 2, 73 (1963).Google Scholar
7. V2O5, orthorhombic, Pmmn, a = 11.516(4), b = 3.5656(4), c = 4.3727(4) Å, after Enjalbert, R. and Galy, J., Acta Crystallogr. C 42, 1467 (1986).Google Scholar
8. β-Cu0.4V2O5, monoclinic, C2/m, a = 15.17, b = 3.62, c = 10.13 Å, β = 108.0° after Casalot, A., Deschanvres, A., Hagenmuller, P. and Raveau, B., Bull. Soc. Chim. Fr., 1730 (1965).Google Scholar