Hostname: page-component-6d856f89d9-sp8b6 Total loading time: 0 Render date: 2024-07-16T06:13:52.968Z Has data issue: false hasContentIssue false

Validation of the p-type Behavior of an Ag-doped ZnSe Film Grown Heteroepitaxially on GaAs(100) Substrate

Published online by Cambridge University Press:  01 February 2011

Takashi Narushima
Affiliation:
Takashi_Narushima@sngw.rdc.hoya.co.jp, HOYA Corporation, R&D Center, 3-3-1 Musashino, Akishima-shi, Tokyo, 196-8510, Japan, +81-42-546-2730, +81-42-546-2742
Hiroaki Yanagita
Affiliation:
hiroaki.yanagita@hoyavc.com, HOYA Corporation, R&D Center, 3-3-1 Musashino, Akishima-shi, Tokyo, 196-8510, Japan
Masahiro Orita
Affiliation:
orita@sngw.rdc.hoya.co.jp, HOYA Corporation, R&D Center, 3-3-1 Musashino, Akishima-shi, Tokyo, 196-8510, Japan
Get access

Abstract

To validate p-type semiconducting behavior in Ag-doped ZnSe, single-crystal films were grown on GaAs(100) substrates using an evaporation method with ZnSe and Ag2Se powder sources. The heteroepitaxial relationship between ZnSe(100) and GaAs(100) was observed using X-ray diffraction and transmission electron microscopy; secondary phases containing silver or silver selenide were not detected. A film doped with Ag at 1 1020 atm·cm-3 had a conductivity of 1.5 x 10-5 S·cm-1. The hot-probe test indicated p-type polarity, with a clear and reproducible rectifying characteristic demonstrated by forming a ZnSe:Ag/p-GaAs:Zn junction. The work function of a ZnSe:Ag film measured by ultraviolet photoelectron spectroscopy was 6.3 eV. The ZnSe:Ag film is suitable as an injection layer in widegap semiconductor devices and organic light-emitting diodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Qiu, J., DePuydt, J. M., Cheng, H., and Haase, M. A., Appl.Phys.Lett. 59, 302, (1991).Google Scholar
2. Faschinger, W., Ferreira, S. and Sitter, H., Appl.Phys.Lett. 64, 2682, (1994).Google Scholar
3. Cheng, H., DePuydt, J. M., Potts, J. E., and Smith, T. L., Appl. Phys. Lett. 52, 147, (1988).Google Scholar
4. Cheng, H., DePuydt, J. M., Potts, J. E. and Haase, M. A., J. Crystal. Growth. 95, 512, (1989).Google Scholar
5. Okawa, K., Mitsuyu, T. and Yamazaki, O., J. Appl. Phys. 62, 3216 (1987).Google Scholar
6. Ido, T. and Goto, H., J. Crystal. Growth. 259, 257, (2003).Google Scholar
7. Ali, Z., Aqili, A. K. S., Maqsood, A., and Akhtar, S. M. J., Vacuum, 80, 302, (2005).Google Scholar
8. Ali, Z., Aqili, A. K. S., Shafique, M. and Maqsood, A., J.Non-Cryst.Solids, 352, 409, (2006).Google Scholar
9. Khomchenko, V., Fedorenko, L., Yusupov, N., Rodionov, V., Bacherikov, Y., Svechinikov, G., Zavyalova, L., Roshchina, N., Lytvyn, P., and Mukhlio, M., Appl.Surf.Sci. 247, 434, (2005).Google Scholar
10. Miyajima, T., Akimoto, K., and Mori, Y., J.J.Appl.Phys., 28, L2330, (1989).Google Scholar
11. Orita, M., Narushima, T. and Yanagita, H., submitted.Google Scholar