Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T22:24:30.273Z Has data issue: false hasContentIssue false

Vibrational Dephasing and Collision Induced Scattering in Molecular Liquids

Published online by Cambridge University Press:  21 February 2011

Jiri Jonas*
Affiliation:
Department of Chemistry, School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801
Get access

Abstract

The results of several Raman studies of vibrational dephasing in polyatomic molecular liquids at high pressure are reviewed. The density and temperature effects on vibrational dephasing of isotropic Raman bands for different vibrational models are reported for the following liquids: C(CH3)4; Si(CH3)4; Ge(CH3)4; ; Sn(CH3)4 and isobutylene CH2; = C(CH3) 2.The experimental data are used to test the current theoretical models of vibrational dephasing. Selected results of our high pressure experiments on collision induced scattering in polyatomic molecular liquids demonstrate well the essential role of high pressure in studying these phenomena.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jonas, J., Science 216, 1179 (1982).Google Scholar
2. Schroeder, J., Schiemann, V. H., and Jonas, J., J. Mol. Phys. 34, 1501 (1977).Google Scholar
3. Schroeder, J., Schieann, V. H., and Jonas, J., J. Chem. Phys. 69, 5479 (1978).Google Scholar
4. Schroeder, J., Schiedann, V. H., Sharko, P. T., and Jonlas, J., a. Chem. Rhys 66, 3215 (1977)Google Scholar
5. Tanabe, K. and Jonas, J., Mol. Phys. 38, 131 (1979).Google Scholar
6. Nafie, L. A. and Peticolas, W. L., J. Chem. Phys. 57, 3145 (1972).Google Scholar
7. Oxtoby, D. W., Adv. Chem. Phys. 40, 1 (1979).Google Scholar
8. Oxtoby, D. W., Ann. Rev. Phys. Chem. 32, 77 (1981).Google Scholar
9. Bratos, S. in “Vibrational Spectroscopy of Molecular Liquids and Solids.” Ed. Bratos, S., Pick, R. M. (Plenum, New York 1980) pp. 4360.Google Scholar
10. Fischer, S. F., Laubereau, A., Chem. Phys. Lett. 35, 6 (1975).Google Scholar
11. Oxtoby, D. W., Rice, S. A., Chem. Phys. Lett. 42, 1 (1976).Google Scholar
12. Oxtoby, D. W., J. Chem. Phys. 70, 2605 (1979).Google Scholar
13. Wertheimer, R. K., Mol. Phys. 35, 257 (1978).Google Scholar
14. Wertheimer, R. K., Chem. Phys. Lett. 52, 224 (1977).Google Scholar
15. Lynden-Bell, R. M., Mol. Phys. 33, 907 (1977).Google Scholar
16. Sharko, P. T., Besnard, M., and Jonas, J., J. Phys. Chem. in press.Google Scholar
17. Parkhurst, H. G. Jr. and Jonas, J., J. Chem. Phys. 63, 2698, 2705 (1975).Google Scholar
18. Schweizer, K. S. and Chandler, D., J. Chem. Phys. 76, 2296 (1982).Google Scholar
19. Chapman, S. and Cowling, T. G., “The Mathematical Theory of Non-Uniform Gases,” (Cambridge University Press, Cambridge 1939).Google Scholar
20. Posch, H. A. and Litovitz, T. A., Mol. Phys. 32, 1559 (1976).Google Scholar
21. Herzfeld, K. F. and Litovitz, T. A. in “Absorption and Dispersion of Ultrasonic Waves,” (Academic Press, New York 1959).Google Scholar
22. Perry, S. and Jonas, J., J. Chem. Phys. submitted.Google Scholar
23. Schindler, W. and Jonas, J., J. Chem. Phys. 72, 5019 (1980).Google Scholar
24. Benson, A. M. and Drickamer, H. G., J. Chem. Phys. 27, 1169 (1957).Google Scholar
25. Rothschild, W. G., J. Chem. Phys. 65, 455 (1976).Google Scholar
26. Kubo, R. in: Fluctuations, Relaxation, and Resonance in Magnetic Systems, edited by Ter Haan, D. Plenum Press, N.Y. 1962.Google Scholar
27. Schindler, W., Sharko, P. T., and Jonas, J., J. Chem. Phys. 76, 3493 (1982).Google Scholar
28. Gelbart, W. M., Avd. Chem. Phys. 26, 1 (1974).Google Scholar
29. Birnbaum, G., Vibrational Spectroscopy of Moleculat:: Liquids and Solids, Bratos, S. and Pick, R. M., Eds., Plenum Press, New York, p. 147 (1980).Google Scholar
30. Madden, P. A., Raman Spectroscopy Linear and Nonlinear, Lascombe, J., Huong, P. V., and Wiley, J., Ed. (New York 1982) p. 307.Google Scholar
31. Birnbaum, G., Proc. 8th Symposium on Thermophysical Properties, Vol. I, Thermophysical Properties of Fluids, Sengers, Jan V., Ed. Ann. Soc. Mech. Eng. (New York 1982) p. 8.Google Scholar
32. Guillot, B., Bratos, S., and Birnbaum, G., Phys. Rev. 22, 2230 (1980).Google Scholar
33. Schroeder, J. and Jonas, J., J. Chem. Phys. 34, 11 (1978).Google Scholar
34. Zerda, T. W., Perry, S., and Jonas, J., J. Chem. Phys. Lett. 83, 600 (1981).Google Scholar
35. Alder, B. J., Weiss, J. J., and Strauss, M. L., Phys. Rev. 47, 281 (1973).Google Scholar
36. Alder, B. J., Strauss, H. L., and Weiss, J. J., J. Chem. Phys. 59, 1002 (1973).Google Scholar
37. Hegemann, B. and Jonas, J., Unpublished Results.Google Scholar
38. Baker, K. and Jonas, J., Unpublished Results.Google Scholar
39. Ballucani, V. and Vallauri, R., Mol. Phys. 38, 1099, 1115 (1979).Google Scholar