Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-19T05:43:54.290Z Has data issue: false hasContentIssue false

Viscoelastic Behavior of Polymeric Optical Fiber

Published online by Cambridge University Press:  12 May 2015

Alejandro Sánchez
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Col. Universidad Nacional Autónoma de México, C. U., Delegación Coyoacán, C. P. 04510, D. F., México.
Karla Y. Guerra
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Col. Universidad Nacional Autónoma de México, C. U., Delegación Coyoacán, C. P. 04510, D. F., México.
Andrés V. Porta
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Col. Universidad Nacional Autónoma de México, C. U., Delegación Coyoacán, C. P. 04510, D. F., México.
Susana Orozco*
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Col. Universidad Nacional Autónoma de México, C. U., Delegación Coyoacán, C. P. 04510, D. F., México.
Get access

Abstract

In this work, the viscoelastic behavior of a polymeric step-index optical fiber is studied, and the loss factors η of their complex moduli are calculated. The loss factors of the Young and shear moduli were determined from the measurement of the damping ratio γ of a simple pendulum and a torsion pendulum respectively, using the Kelvin-Voigt model of the viscoelastic theory. The shear and Young complex moduli can be used to study the optic-viscoelastic behavior of a polymeric step-index optical fiber.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sokkar, T.Z.N., Shams El-Din, M.A., El-Tawargy, A.S., Optics and Lasers in Engineering, 50, 1223 (2012).CrossRefGoogle Scholar
Stefani, A., Andresen, S., Yuan, W., Bang, O., IEEE Sensors Journal, 12, 3047 (2012).CrossRefGoogle Scholar
Kulkarni, A., Na, J., Kim, Y.J., Baik, S., Kim, T., Optical Fiber Technology, 15, 131 (2009).CrossRefGoogle Scholar
Brüel & Kjær Sound & Vibration Measurement A/S, Measurement of the complex modulus of elasticity: A brief survey. Application Notes, Denmark (1982).Google Scholar
Monclus, M.A., Jennett, N.M., Philosophical Magazine, 91, 1308 (2011) DOI:10.1080/14786435.2010.504197.CrossRefGoogle Scholar
Bernard, C., Delaizir, G., Sangleboeuf, J.C., Keryvin, V., Lucas, P., Bureau, B., Zhang, X.H., Rouxel, T., Journal of the European Ceramic Society, 27, 3253 (2007).CrossRefGoogle Scholar
Sánchez, A., Orozco, S., Porta, A.V., Ortiz, M.A., Materials Chemistry and Physics, 139, 176 (2013).CrossRefGoogle Scholar
Hosten, B., Castaings, M., Composites, 39, 1054 (2008).CrossRefGoogle Scholar