Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-25T14:08:48.814Z Has data issue: false hasContentIssue false

A Weak-Beam Study of the Microstructure of β-CUZN Deformed in the Domain of Flow Stress Anomaly

Published online by Cambridge University Press:  26 February 2011

G. Dirras
Affiliation:
Laboratoire de Métallurgie Physique, 40 Avenue du Recteur Pineau, 86022- Poitiers Cedex -France.
P. Beauchamp
Affiliation:
Laboratoire de Métallurgie Physique, 40 Avenue du Recteur Pineau, 86022- Poitiers Cedex -France.
P. Veyssière
Affiliation:
LEM, CNRS-ONERA, BP 72,92322 Châtillon Cedex, France
Get access

Abstract

β-brass single crystals oriented along <001> were deformed between room temperature and 300°C. The deformation microstructure and dissociation properties were studied by transmission electron microscopy under weak-beam imaging conditions.

Whatever the deformation temperature, superdislocations with <111> Burgers vector and strong edge component dominate within the microstructure. In addition, below the temperature of the flow stress peak (≈ 250°C), the density of screw relative to mixed superdislocations decreases as straining temperature increases. Dissociation does not always occur on the slip plane neither does it proceed exclusively by glide, even in samples deformed at 100°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Head, A.K., Loretto, M.H. and Forwood, P., Phys. Stat. Sol., 20 (1967) 521.Google Scholar
[2] Vitek, V., in Dislocations and the Properties of Real Materials, edited by The Institute of Metals (Arrowsmith, Bristol, 1985), p. 30.Google Scholar
[3] Ardley, G.W., and A.H. Cottrell., Proc. Roy. Soc., 219 (1959) 328.Google Scholar
[4] Brown, N., Phil. Mag., 4 (1959) 693.Google Scholar
[5] Sanchez, J.M., Eng, S., Wu, Y.P. and Tien, J.K., in HighTemperature Ordered Intermetallic Alloys II edited by Stoloff, N.S. Koch, C.C., Liu, C.T., and Izumi, O., (Mater. Res. Soc. Proc. 81, Pittsburg, PA 1987), pp.57–64; J. K. Tien, S. Eng and J.M. Sanchez, HighTemperature Ordered Intermetallic Alloys II, pp. 183193.Google Scholar
[6] Umakoshi, Y., Yamaguchi, M., Namba, Y., and Murakami, M., Acta metall., 24 (1976) 89.Google Scholar
[7] Saka, H. and Zhu, Y.M., Phil. Mag.A, 51 1985 629.Google Scholar
[8] Saka, H., Zhu, Y.M., Kawase, M., Nohara, A. and Imura, T., Phil. Mag. A, 51 (1985) 365.Google Scholar
[9] Duesbery, M., in Dislocations in Solids, edite by Nabarro, F.R.N., in the press.Google Scholar
[10] Saka, H. and Zhu, Y.M., in Strength of Metals and Alloys, edited by Kettunen, P.O., Lepistö, T.K., Lehtonen, M.E. (Pergamon Press, Oxford, 1988), p.227.Google Scholar
[11] Veyssière, P., in High Temperature Ordered Intermetallic Alloys III, edited by Koch, C.C., Liu, C.T., Stoloff, N.S. and Taub, A.I., (Mater. Res. Soc. Proc. 133, Pittsburg, PA 1988).Google Scholar
[12] Hombogen, E. and Warlimont, H., Acta Metall., 15 (1967) 943.CrossRefGoogle Scholar
[13] Rinnovatore, J.V. and Brown, N., Trans. Meatl. Soc. A.I.M.E., 239 (1959) 225.Google Scholar
[14] Morin, M., private communication.Google Scholar
[15] Nemoto, M., Echigoya, J. and Suto, H., in Proc. 5th Int. Conf. on High VolatgeElectron Microscopy, Kyoto 1977, p. 467.Google Scholar
[16] Dirras, G., Beauchamp, P. and Veyssière, P., in preparation.Google Scholar
[17] Vitek, V., in Dislocations and the Properties of Real Materials, edited by The Institute of Metals (Arrowsmith, Bristol, 1985), p. 30.Google Scholar