Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-16T17:04:50.781Z Has data issue: false hasContentIssue false

Wet Etching of Ion-implanted GaN Crystals by AZ-400K Photoresist

Published online by Cambridge University Press:  03 September 2012

C.A. Carosella
Affiliation:
Naval Research Laboratory, Washington DC 20375
B. Molnar
Affiliation:
Naval Research Laboratory, Washington DC 20375
S. Schiestel
Affiliation:
George Washington University, Washington, DC
J.A. Sprague
Affiliation:
Naval Research Laboratory, Washington DC 20375
Get access

Abstract

The photoresist developer AZ-400K, commonly used to remove AlN encapsulant layers on GaN crystalline films, is found to also etch certain as-grown GaN films. Even as-grown GaN films, which can not be etched in AZ-400K, however can be etched if amorphized by ion implantation. Etch rates of as high as 450 Å/min. were observed. The etching proceeds linearly in GaN in the first few minutes to a depth corresponding to the depth of the amorphous region. Subsequently, the etching rate saturates. Annealing of the highly amorphized samples up to 1000°C for one minute in a N2/H2 gas mixture does not reduce the etch rate, but for lower doses we observed a reduction of the etch rate. Observations of etching depth under various ion-implanted conditions could be correlated with the number of displacements per atoms (dpa) required for amorphization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nakamura, S.S., Senoh, M., Nagahama, S., Iwassa, N., Yamada, T., Matsushita, T., Kikoyu, H. and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996)Google Scholar
[2] Binari, S., Rowland, L.B., Kruppa, W., Kelner, G., Doverspike, K. and Gaskill, D.K., Electron. Lett. 30, 1248 (1994)Google Scholar
[3] Zolper, J.C., Han, J., Biefeld, R.M., Deusen, S.B. Van, Wampler, W.R., Reiger, D.J., Pearton, S.J., Williams, J.S., Tan, H.H., Karlicek, R.F. Jr., and Stall, R.A., J. Electron. Mater. 27, 179 (1998)Google Scholar
[4] Mileham, J.R., Pearton, J.S., Abernathy, C.R., MacKenzie, J.D., Shul, R.J. and Kilcoyne, S.P., Appl. Phys. Lett., 67, 1119 (1995)Google Scholar
[5] Chu, T.I., J. Electrochem. Soc. 118, 1200 (1971)Google Scholar
[6] Seeelmann-Eggebert, M., Weyher, J.L., Obloh, H., Zimmermann, H., Rar, A. and Porowski, S., Appl. Phys. Lett. 71, 2635 (1997)Google Scholar
[7] Stocker, D.A., Schubert, E.F. and Redwing, J.M., Appl. Phys. Lett. 73 (1998)Google Scholar
[8] Mileham, J.R., Pearton, S.J., Abernathy, C.R., MacKenzie, J.D., Shul, R.J. and Kilcoyne, S.P., J.Vac. Sci. Technol. A 14, 836 (1996)Google Scholar
[9] Vartuli, C., Pearton, S.J., Abernathy, C.R., MacKenzie, J.D. Ren, Zolper, J.C. and Shul, R.J., Solid-State Electronics 41, 1947 (1997)Google Scholar
[10] Ziegler, J.F. and Biersak, J.P., SRIM-2000.38, IBM Corp. (1999)Google Scholar
[11] Tan, H.H., Williams, J.S., Zou, J., Cockayne, D.H., Pearton, S.J. and Stall, R.A., Appl. Phys. Lett. 69 (16), 2364 (1996)Google Scholar
[12] Liu, C., Wenzel, A., Volz, K., Rauschenbach, B., Nucl. Instr. Meth. B 148, 396 (1999)Google Scholar
[13] Liu, C., Mensching, B., Zeitler, M., Volz, K. and Rauschenbach, B., Phys. Rev. B, Vol. 57, No. 4, 2530 (1998)Google Scholar