Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-20T22:30:16.565Z Has data issue: false hasContentIssue false

Wiring and introduction of single silicon nanocrystals into multi-walled carbon nanotubes

Published online by Cambridge University Press:  01 February 2011

Francois Le Normand
Affiliation:
IPCMS, UMR 7504 CNRS, 23 rue du Loess, F-67037 Strasbourg, France
Ovidui Ersen
Affiliation:
IPCMS, UMR 7504 CNRS, 23 rue du Loess, F-67037 Strasbourg, France
Coung Pham-Huu
Affiliation:
LMSPC-ECPM, 25, rue Becquerel, F67087 Strasbourg, France
Dominique Begin
Affiliation:
LMSPC-ECPM, 25, rue Becquerel, F67087 Strasbourg, France
Benoit Louis
Affiliation:
LMSPC-ECPM, 25, rue Becquerel, F67087 Strasbourg, France
Marc-Jaques Ledoux
Affiliation:
LMSPC-ECPM, 25, rue Becquerel, F67087 Strasbourg, France
Get access

Abstract

For a long time the application of silicon technology for optoelectronics has been limited by the extremely poor generation of light by bulk silicon. However, the properties of Si were found to depend on its structure at a nanometric scale and bright photoluminescence from silicon nanocrystals (Si-nc) was discovered. In this work, the results obtained for the mechanical connecting of single Si-nc by two independent techniques are presented. First, the room temperature approach of connecting and introducing Si-nc embedded in colloidal suspensions by capillary forces within multi-walled carbon nanotubes (MWCNTs) and second, the direct growth of MWCNTs on single Si-nc coated with iron catalyst are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1NATO Proceedings: Towards the First Silicon Laser, editors: Pavesi, L., Gaponenko, S., Negro, L. Dal, NATO Science Serries, II. Mathematics, Physics and Chemistry – Vol. 93 (Kluwer Academic Publishers, 2003), p. 145, p. 197Google Scholar
2 Wolkin, M. V., Jorne, J., Fauchet, P. M., Allan, G. and Delerue, C., Phys. Rev. Lett. 82 197 (1999)10.1103/PhysRevLett.82.197Google Scholar
3 Švrček, V., Slaoui, A., Muller, J C., J. Appl. Phys. 95 3158 (2004)10.1063/1.1649817Google Scholar
4 Švrček, V., Rehspringer, J L., Gaffet, E., Slaoui, A., Muller, J. C., Journal of Crystal Growth 275 589 (2005)10.1016/j.jcrysgro.2004.12.012Google Scholar
5 Švrček, V., Slaoui, A., Rehspringer, J L., Muller, J. C., J. of Lumin. 101 269 (2003)10.1016/S0022-2313(02)00549-5Google Scholar
6 Luterová, K., Dohnalová, K., Švrček, I. Pelant, J.P. Likforman, Cregut, O., Gilliot, P., Honerlage, B., Appl. Phys. Lett. 84 3280 (2004)10.1063/1.1723692Google Scholar
7 Monthioux, M., Carbon, 40 1809 (2002)10.1016/S0008-6223(02)00102-1Google Scholar
8 Švrček, V. et al submitted to J of Chem. Phys. (2005)Google Scholar
9 Švrček, V., Slaoui, A., Rehspringer, J L., Muller, J. C., Semicond. Sci. Technol. 20 314319 (2005)10.1088/0268-1242/20/3/011Google Scholar
10 Švrček, V. et al submitted to Nanoletters.(2005)Google Scholar
11 Švrček, V., Normand, F., Amadou, J., Dintzer, T., Pham-Huu, C, Louis, B., Begin, D., M-J. Ledoux, MRS spring meeting 2005 San Francisco, (ID Number 122911) (poster).Google Scholar