Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-23T02:36:48.102Z Has data issue: false hasContentIssue false

W/Si1-xGex Schottky Barrier: Effect of Stress and Composition

Published online by Cambridge University Press:  22 February 2011

F. Meyer
Affiliation:
Institut d'Electronique Fondamentale, CNRS URA 22, Bât. 220, Université Paris Sud, 91405 Orsay Cedex, France
V. Aubry
Affiliation:
FRANCE TELECOM CNET BP 98, Chemin du Vieux Chêne, 38243 Meylan Cedex, France
P. Warren
Affiliation:
FRANCE TELECOM CNET BP 98, Chemin du Vieux Chêne, 38243 Meylan Cedex, France
D. Dutartre
Affiliation:
FRANCE TELECOM CNET BP 98, Chemin du Vieux Chêne, 38243 Meylan Cedex, France
Get access

Abstract

The Schottky barrier height of W on Si1-xGex/ Si has been investigated as a function of composition and strain retained in the alloy for a given composition. The barrier height to ntype films does not vary significantly while that to p-type films follows the same trends than the band gap: it decreases with x and the strain. These results suggest that the Fermi level at the interface is pinned relative to the conduction band.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Houghton, D.C., Noël, J.P., Rowell, N.L. and Perovic, D.D., “Multicomponent and Multilayered Thin Flms for Advanced Microtechnologies. Techniques, Fundamentals and Devices”, ED. Auciello, O. and Engelman, J., Klewer Academic Publishers (1993) p401.Google Scholar
2 Zhou, G.L., Morkoc, H., Thin Solid Films 231, 125 (1993).Google Scholar
3 Arienzo, M., Iyer, S.S., Meyerson, B. S, Patton, G.L. and Stork, J.M.C., Appl.Surf.Sci. 48, 377 (1991).Google Scholar
4 People, R., Phys.Rev. B 32, 1405 (1985).Google Scholar
5 Dutartre, D., Brémond, G., Souifi, A. and Benyattou, T., Phys. Rev. B3, 44 (1991).Google Scholar
6 Rowell, N.L. Vescan, L., Schmidt, K., Dieker, C., Tong, H.P., Vescan, LT. and Liith, H., Thin Solid Films 22, 5 (1992).Google Scholar
7 Bremond, G., Souiffi, A., Benyattou, T. and Dutatre, D., Thin Solid Films, 22, 60 (1992).Google Scholar
8 Cohen, S.S. and Gildenblat, S.S.H., “Metal Semiconductore Contacts”, Academic Press, Vol.13 (1986).Google Scholar
9 Rhoderick, E.H. and Williams, R.H., “Metal Semiconductor Contacts”, Oxford Science Publications, 2nd ed. (1988).Google Scholar
10 Ottaviani, G., J.Vac.Sci.Technol. 13, 924 (1981).Google Scholar
11 Brillson, L.J. Slade, M.L., Viturro, R.E., Kelly, M.K., Tachz, N., Margaritondo, G., Woodall, J.M., Kirchner, P.D., Pettit, G.D. and Wright, S.L., J.Vac.Sci.technol. 4, 919 (1986).Google Scholar
12 Escher, J.S., James, L.W., Ankaran, R., Antypas, G. A, Moon, R.L. and Bell, R.L., J.Vac.Sci.Technol. 13, 874 (1976).Google Scholar
13 Eizenberg, M., Heiblum, M., Nathan, M.I., Braslau, N. and Mooney, P.M., J. Appl. Phys. 61, 1516 (1987).Google Scholar
14 Thomas, O., Delage, S., d'Heurle, F.M. and Scilla, G., Appl. Phys. Lett. 54, 228 (1989).Google Scholar
15 Buxbaum, A., Einzenberg, M., Raizman, A. and Schaffler, F., Appl. Phys. Lett. 59, 665 (1991).Google Scholar
16 Kanaya, H., Hasegawa, F., Yamaka, E., Moriyan, T. and Nakajima, M., Jpn. J. Appl. Phys. 28, L544 (1989).Google Scholar
17 Liou, H.K., Wu, X., Gennser, U., Kesan, V.P., Iyer, S.S., Tu, K.N. and Yang, E.S., Appl. Phys. Lett. 60, 577 (1992).Google Scholar
18 Buxbaum, A., Zolotoyabko, E., Eizenberg, M. and Schäffler, F., Thin Solid Films 222, 157 (1992).Google Scholar
19 Buxbaum, A., Eizenberg, M., Raizman, A. and Schäffler, F., J.J.Appl.Phys. 30, 3590 (1991).Google Scholar
20 Aboelfotoh, O., Solid State Electronics 34, 51 (1991).Google Scholar
21 Dutartre, D., Warren, P., Berbezier, I. and Perret, P., Thin Solid Films 222, 52 (1992).Google Scholar
22 Dutartre, D., Warren, P., Provenier, F., Chollet, F. and Pério, A., to be published in J.Vac.Sci.Technol.Google Scholar
23 Tung, R.T., Phys.Rev. 45, 13509 (1992).Google Scholar
24 Braunstein, R., Moore, A.R. and Herman, F., Phys. Rev. 109, 695 (1958).Google Scholar
25 Bardeen, J., Phys.Rev. 71, 171 (1947).Google Scholar
26 McCaldin, J.O., McGill, T.C. and Mead, C.A., J.Vac.Sci.Technol. 13, 802 (1976).Google Scholar
27 Tersoff, J., J. Vac. Sci. Tech. B3, 1157 (1985), Surf. Sci. 168, 275 (1986).Google Scholar
28 Margaritondo, G., Surf.Sci. 168, 438 (1986).Google Scholar
29 Ni, W.X., Knall, I. and Hansson, G.V., Surf.Sci. 189/190, 379 (1987).Google Scholar
30 Duboz, J.Y., Badoz, P.A., d'Avitaya, F. Arnaud and Rosencher, E., Phys. Rev. B 40, 10607 (1989)Google Scholar
31 Aboelfotoh, M.O., in Avanced Metallizations, edited by Katz, A., Murarka, S.P. and Appelbaum, A. (Mat.Res.Soc. Proc. 181, Pittsburgh, PA, 1990) pp. 3.Google Scholar