Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-20T14:20:21.209Z Has data issue: false hasContentIssue false

Xps Study of CdTe Surface Layers: Effects of Hydrogen

Published online by Cambridge University Press:  28 February 2011

L Svob
Affiliation:
Laboratoire de Physique des Solides de Bellevue, C.N.R.S., 1, Place Aristide Briand, F-92195 Meudon Principal Cedex, France
D. Ballutaud
Affiliation:
Laboratoire de Physique des Solides de Bellevue, C.N.R.S., 1, Place Aristide Briand, F-92195 Meudon Principal Cedex, France
A. Heurtel
Affiliation:
Laboratoire de Physique des Solides de Bellevue, C.N.R.S., 1, Place Aristide Briand, F-92195 Meudon Principal Cedex, France
Y. Marfaing
Affiliation:
Laboratoire de Physique des Solides de Bellevue, C.N.R.S., 1, Place Aristide Briand, F-92195 Meudon Principal Cedex, France
Get access

Abstract

The effects of different hydrogen or equivalent deuterium treatments on CdTe superficiallayers are studied. Surface chemical analysis is performed by x-ray photoelectron spectroscopy and hydrogen profiles are controlled by secondary ion mass spectroscopy using deuterium. Hydrogen plasma etching leads to a clean and nearly stoichiometric surface, and the surface abrasion rate is higher than the hydrogen in-diffusion rate. Deuterium implantation by a Kaufman source leads to surface depleted of tellurium and prevents them from further oxidation. Annealing under deuterium gas produces a similar surface, free fromoxide, but not stable with regard to further oxidation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Patterson, H. M. and Williams, R. H., J. Phys. D 11, L83 (1978).Google Scholar
2. Amitharaj, P. M. and Pollak, F. H., Appl. Sci. Lett. A5, 789 (1984).Google Scholar
3. Haring, J. P., Werthen, J. G., and Bube, R. H., J. Vac. Sci. Technol. A 1, 1469 (1983).Google Scholar
4. Feldman, R. D., Opila, R. L., and Bridenbaugh, P. M., J. Vac. Sci. Technol. A 3, 1988 (1985).Google Scholar
5. Svob, L., Chevallier, J., Ossart, P., and Mircea, A., J. Mater. Sci. Lett. a, 1319 (1986).Google Scholar
6. Triboulet, R. and Marfaing, Y., J. Electrochem. Soc. 20, 1261 (1973).Google Scholar
7. Fewster, P. F. and Whiffin, P. A. C., J. Appl. Phys. 5A, 4668 (1983).Google Scholar
8. Seah, M. P., Surf. Int. An. 2, 222 (1980).CrossRefGoogle Scholar
9. Wagner, C. D., Far. Disc. Chem. Soc. 60, 291 (1975).Google Scholar
10. Svob, L., Ballutaud, B., and Hage-Ali, M., J. Mater. Sci. Lett. 7, 949 (1988).Google Scholar