Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-25T08:42:38.643Z Has data issue: false hasContentIssue false

XPS Study of Chemical Interactions in Ion-Implanted Silica Glasses

Published online by Cambridge University Press:  25 February 2011

Renzo Bertoncello
Affiliation:
Dipartimento di Chimica Inorganica, Metallorganica ed Analitica, Università di Padova, via Loredan 4, 35131-Padova, Italy
A. Glisenti
Affiliation:
Dipartimento di Chimica Inorganica, Metallorganica ed Analitica, Università di Padova, via Loredan 4, 35131-Padova, Italy
G. Granozzi
Affiliation:
Dipartimento di Chimica Inorganica, Metallorganica ed Analitica, Università di Padova, via Loredan 4, 35131-Padova, Italy
G. Battaglin
Affiliation:
Dipartimento di Chimica Fisica, Università di Venezia, Calle Larga Santa Marta 2137, 30123-Venezia, Italy
E. Cattaruzza
Affiliation:
Dipartimento di Fisica, Università di Padova, via Marzolo 8, 35131-Padova, Italy
P. Mazzoldi
Affiliation:
Dipartimento di Fisica, Università di Padova, via Marzolo 8, 35131-Padova, Italy
Get access

Abstract

An almost unexplored research field of the ion implantation processes is related to chemical modifications induced in a target by chemically reactive ions. This kind of chemistry is somewhat similar to the “hot atom” chemistry, where chemical transformations are produced by recoil atoms originating from nuclear reactions or radiative decay. XPS technique can provide unique informations on the chemical modifications produced by such processes. XPS results will be reported on silica glasses implanted with titanium, silver and tungsten ions in a dose range from l×1016 to 5×1016 ions cm−2, at energies ranging from 15 keV to few hundreds of keV. Most of samples were also subjected to a second implant with N ions. Radiation damage and chemical effects have been discriminated. Chemical compound formation as well as precipitation of the implanted species have been observed. Interestingly, evidences for reactions between chemical species obtained by the first implant and nitrogen (subsequently implanted) will be reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. EerNisse, E.P., J. Appl. Phys., 45, 167 (1974).Google Scholar
2. Webb, A.P., Allen, L., Edgar, B.R., Houghton, A.J., Towsend, P.D. and Pitt, C.W., J. Phys. D, 8, 1567, (1975).Google Scholar
3. Webb, A.P. and Towsend, P.D., J. Phys. D, 8, 1567, (1975).Google Scholar
4. Wang, C., Tao, Y. and Wang, S., J. Non-Cryst. Solids, 52, 589, (1982).Google Scholar
5. Naik, I.K., Appl. Phys. Letters, 43, 519, (1983).Google Scholar
6. Naik, I.K., in Processing of Guided Wave Optoelectronic Materials, edited by Holman, R.L. and Smyth, D.M. (Proc. SPIE 460, 56, (1984).CrossRefGoogle Scholar
7. Carnera, A., Mazzoldi, P., Boscolo-Boscoletto, A., Caccavale, F., Bertoncello, R., Granozzi, G., Spagnol, I. and Battaglin, G., J. Non-Cryst. Solids, 125, 293, (1990).CrossRefGoogle Scholar
8. Tagami, T., Oyoshi, K. and Tanaka, S., Mater. Res. Soc. Symp. Proc., 128, 519, (1989); Mater. Res. Soc. Symp. Proc., 157, 149, (1990).CrossRefGoogle Scholar
9. Arnold, G.W., Brow, R.K. and Myers, D.R., J. Non-Cryst. Solids, 120, 234, (1990).Google Scholar
10. Oyoshi, K., Tagami, T. and Tanaka, S., J. Appl. Phys., 68, 3653, (1990).CrossRefGoogle Scholar
11. Hosono, H., Abe, Y., Oyoshi, K. and Tanaka, S., Phys Rev. B43, 1193, (1991).Google Scholar
12. Mazzoldi, P., Camera, A., Caccavale, F., Favaro, M.L., Boscolo-Boscoletto, A., Granozzi, G., Bertoncello, R. and Battaglin, G., J. Appl. Phys., 70, 3528, (1991).CrossRefGoogle Scholar
13. Mazzoldi, P. and Arnold, G.W., in Ion Beam Modifications of Insulators, edited by Mazzoldi, P. and Arnold, G.W. (Elsevier Science Publishers, Amsterdam, 1987).Google Scholar
14. Biersack, J.P. and Haggmark, L.G., Nucl. Instr. and Meth., 174, 275, (1980).Google Scholar
15. Seah, M.P. and Smith, G.C. in Practical Surface Analysis -Vol 1, second.Edition ed by Briggs, D. and Seah, M.P., appendix 1, pp 543544 (Wiley, Chichester, 1990).Google Scholar
16. Shirley, D.A., Phys. Rev., 55, 4709, (1972).CrossRefGoogle Scholar
17. Vegh, J., J. Electron Spectr. Rel. Phen., 46, 411, (1988).CrossRefGoogle Scholar
18. Yeh, J. J. and Lindau, I., Atomic Data and Nuclear Data Tables, 32, 1, (1985).Google Scholar
19. Matsunami, N. et al., Atomic Data Nuclear Data Tables, 31, 1, (1984).Google Scholar
20. Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.S. and Muilemberg, G.E., in Handbook of X-ray Photoelectron Spectroscopy edited by Wagner, C.D. (Perkin Elmer Corp., Eden Prairie, U.S.A., 1978)Google Scholar
21. Briggs, D. and Seah, M.P., in Practical Surface Analysis -Vol 1, second.Edition ed by Briggs, D. and Seah, M.P., (Wiley, Chichester, 1990).Google Scholar
22. X-ray Photoelectron Spectroscopy Database, version 1.0, (National Institute of Standards and Technology, Gaithersburg, MD, U.S.A., 1989)Google Scholar
23.Yu.V. Plyuto, Stoch, J., Babytch, I.V. and Chuyko, A.A., J. Non-Cryst. Solids, 124, 41, (1990).Google Scholar