Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-11T12:15:38.733Z Has data issue: false hasContentIssue false

X-Ray Microprobe for the Microcharacterization of Materials

Published online by Cambridge University Press:  21 February 2011

C. J. Sparks
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831–6117
G. E. Ice
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831–6117
Get access

Abstract

The unique properties of X rays offer many advantages over those of electrons and other charged particles for the microcharacterization of materials. X rays are more efficient in exciting characteristic X-ray fluorescence and produce higher fluorescent signal-to-background ratios than obtained with electrons. Detectable limits for X rays are a few parts per billion which are 10−3 to 10−5 lower than for electrons. Energy deposition in the sample from X rays is 10–3 to 10–4 less than for electrons for the same detectable concentration. High-brightness storage rings, especially in the 7 GeV class with undulators, will have sources as brilliant as the most advanced electron probes. The highly collimated X-ray beams from undulators simplify the X-ray optics required to produce submicron X-ray probes with fluxes comparable to electron sources. Such X-ray microprobes will also produce unprecedentedly low levels of detection in diffraction, EXAFS, Auger, and photoelectron spectroscopies for structural and chemical characterization and elemental identification. These major improvements in microcharacterization capabilities will have wide-ranging ramifications not only in materials science but also in physics, chemistry, geochemistry, biology, and medicine.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cosslett, V. E., Engström, A., and Pattee, H. H. Jr., eds., X-ray Microscopy and Microradiography (Academic Press, Inc., 1957).Google Scholar
2. Wiedemann, H., Nucl. Instr. and Methods in Phys. Res. A 266, 24 (1988).Google Scholar
3. Shenoy, G. K., Viccaro, P. J., and Mills, D. M., Argonne National Laboratory Report ANL–88–9, February 1988.Google Scholar
4. Zaluzec, N. J., in Introduction to Analytical Electron Microscopy, edited by Hren, J. J., Goldstein, J. I., and Joy, D. C. (Plenum Press, 1979), pp. 121167.Google Scholar
5. Sparks, C. J., in Major Materials Facilities Ccmmittee, National Research Council, National Academy Press, Washington, D.C., p. 92 (1984).Google Scholar
6. Currie, L. A., Anal. Chem. 40, 586593 (1968).Google Scholar
7. Sparks, C. J. Jr., in Synchrotron Radiation Research, edited by Winick, H. and Doniach, S. (Plenum Press, 1980), pp. 459512.Google Scholar
8. Slatkin, D. N., Hanson, A. L., Jones, K. W., Kramer, H. W., and Warren, J. B., Brookhaven National Laboratory Report BNL-34555, 1984.Google Scholar
9. Underwood, J. H., Thompson, A. C., Wu, Y., Giaugue, R. D., Nucl. Instr. And Methods in Phys. Res. A 266, 296 (1988).CrossRefGoogle Scholar
10. Howells, M. R. and Hastings, J. B., Nucl. Instr. and Methods In Phys. Res.208, 379 (1983).Google Scholar
11. Ice, G. E. and Sparks, C. J., Nucl. Instr. and Methods in Phys. Res. 222, 121 (1984).Google Scholar
12. Goldstein, J. I., in Introduction to Analytical Electron Microscopy, edited by Hren, J. J., Goldstein, J. I., and Joy, D. C. (Plenum Press, 1979), pp. 83120.Google Scholar
13. Kenik, E. A., Scripta Metall. 21, 811 (1987).Google Scholar
14. Cowley, J. W., Diffraction Physics (American Elsevier), 1975.Google Scholar
15. Marra, W. C., Fuoss, P. H., and Eisenberger, P. E., Phys. Rev. Lett. 49(16), 11691172 (1982).Google Scholar
16. Fischer-Colbrie, A., Fuoss, P. H., Marcus, M., and Bienenstock, A., in Stanford Synchrotron Radiation Laboratory Report 83/01, edited by Cantwell, K., 1983.Google Scholar
17. Winick, H. and Doniach, S., eds., Chapters 10–3 in Synchrotron Radiation Research (Plenum Press, 1980).Google Scholar
18. Bianconi, A. L., Incoccia, L., and Stupcich, S., eds., Proceedings of Second International Conference on EXAFS and Near-Edge Structure (Springer-Verlag, 1983).Google Scholar
19. Horowitz, P. and Howell, J., Science 178, 608 (1972).CrossRefGoogle Scholar
20. Sparks, C. J., Raman, S., Ricci, E., Gentry, R. V., and Krause, M. O., Phys. Rev. Lett. 40, 507 (1978).Google Scholar
21. Thompson, A. C., Underwood, J. H., Wu, Y., Glaugue, R. D., Jones, K. W., and Rivers, M. L., Nucl. Instr. and Methods in Phys. Res. A 266, 318 (1988).Google Scholar
22. Ice, G. E., Nucl. Instr. and Methods in Phys. Res. B 24, 397 (1987); and S. Stock, private communication.Google Scholar
23. Bouisseau, P., Grodzins, L., Sparks, C. J., Ice, G. E., and Habenschuss, T., National Synchrotron Light Source Annual Report, BNL–51947, 1985, p.231.Google Scholar
24. Cerrina, F., Margaritondo, G., Underwood, J. H., Hettrick, M., Green, M. A., Brillson, L. J., Franciosi, A., Hdchst, H., Deluca, P. M. Jr., and Gould, M. N., Nucl. Instr. and Methods in Phys. Res. A266, 303307 (1988).Google Scholar