Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-21T06:35:02.860Z Has data issue: false hasContentIssue false

Amorphisation and Devitrification of Al-Transition Metal- Rare Earth Alloys

Published online by Cambridge University Press:  01 February 2011

Livio Battezzati
Affiliation:
Dipartimento di Chimica IFM, Centro di Eccellenza “Superfici ed Interfasi Nanostrutturate”, Università di Torino Via Pietro Giuria 7 10125 Torino, Italy
Marcello Baricco
Affiliation:
Dipartimento di Chimica IFM, Centro di Eccellenza “Superfici ed Interfasi Nanostrutturate”, Università di Torino Via Pietro Giuria 7 10125 Torino, Italy
Martin Kusy'
Affiliation:
Dipartimento di Chimica IFM, Centro di Eccellenza “Superfici ed Interfasi Nanostrutturate”, Università di Torino Via Pietro Giuria 7 10125 Torino, Italy
Mauro Palumbo
Affiliation:
Dipartimento di Chimica IFM, Centro di Eccellenza “Superfici ed Interfasi Nanostrutturate”, Università di Torino Via Pietro Giuria 7 10125 Torino, Italy
Paola Rizzi
Affiliation:
Dipartimento di Chimica IFM, Centro di Eccellenza “Superfici ed Interfasi Nanostrutturate”, Università di Torino Via Pietro Giuria 7 10125 Torino, Italy
Viktoria Ronto'
Affiliation:
Dipartimento di Chimica IFM, Centro di Eccellenza “Superfici ed Interfasi Nanostrutturate”, Università di Torino Via Pietro Giuria 7 10125 Torino, Italy
Get access

Abstract

Amorphisation studies by rapid solidification of Al-based alloys containing a transition metal (TM) and a rare earth element (RE) are reported. Results on primary formation of Al nanocrystals are given and discussed in relation to possible nucleation mechanisms considering the effect of various RE elements (RE = La, Ce, Nd and Sm) in Al87Ni7RE6 alloys. Ti or Zr, immiscible with RE's, are added to the ternary alloys with the aim of revealing possible phase separation in the melt. Calculations of ternary Al-Ni-Ce metastable phase equilibria are helpful in understanding the transformation sequence. Composition profiles ahead of nanocrystals are computed using the DICTRA software which correctly predicts the occurrence of composition gradients.

The surface fracture of mechanically tested samples are observed in TEM to check whether crystallisation is induced by deformation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Inoue, A., Progr. Mater. Sci., 43, 365520 (1998) and references therein.Google Scholar
2. Inoue, A. and Kimura, H., J. Light Metals, 1, 3141 (2001).Google Scholar
3. Guo, F. Q., Poon, S. J. and Shiflet, G. J.. Mater. Sci. Forum, 331–337, 3142 (2000).Google Scholar
4. Gangopadhyay, K. and Kelton, K. F., Phil. Mag. A, 80, 119120 (2000).Google Scholar
5. Battezzati, L., Pozzovivo, S. and Rizzi, P., Mater. Trans. 43, 2593–259 (2002)Google Scholar
6. Battezzati, L., Rizzi, P. and Ronto', V., Mater. Sci. Eng. A, in print.Google Scholar
7. Battezzati, L., Ambrosio, E., Rizzi, P., Garcia Escorial, A. and Cardoso, K., “Complex transformation sequences in Al-TM-RE amorphous alloys”, Proc. 22nd Risø Intern. Symp. on Materials Science, Science of Metastable and Nanocrystalline Alloys Structure Properties and Modelling, ed, Dinesen, A. R. et al., (Risø National Laboratory, 2001), Roskilde, Denmark, pp. 211216.Google Scholar
8. Rontó, V., Battezzati, L., Yavari, A. R., Tonegaru, M., Lupu, N., Heunen, G., Scripta Mat., in print.Google Scholar
9. Battezzati, L., Kusy', M., Ronto', V., “Devitrification of Al-Ni-La- (Ti or Zr) amorphous alloys”, Proc. PROSIZE, Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors, NATO Adv. Workshop, ed. Idzikowski, B. and Švec, P., (Kluwer Pub. Dordrecht, The Netherlands), in print.Google Scholar
10. Battezzati, L., Pozzovivo, S., Rizzi, P., “Nanocrystalline Aluminium Alloys”, Nanoclusters and Nanocrystals, ed. Nalwa, H. S., (American Scientific Publishers, 25650 North Lewis Way, Stevenson Ranch, California 91381–1439, USA, 2003) pp. 283309.Google Scholar
11. Allen, D. R., Foley, J. C., Perepezko, J. H., Acta Met., 46, 431 (1998).Google Scholar
12. Wilde, G., Boucharat, N., Hebert, R. J., Rösner, H., Tong, W. S. and Perepezko, J. H., Advanced Engineering Materials, 5, 125130 (2003).Google Scholar
13. Hono, K., Zhang, Y., Inoue, A. and Sakurai, T., Mater. Sci. Eng., A226–228, 498502 (1997).Google Scholar
14. Zhang, Y., Warren, P. J., Cerezo, A., Mater. Sci. and Eng. A, A327, 109115 (2002).Google Scholar
15. Gangopadhyay, A. K., Croat, T. K. and Kelton, K. F., Acta mater., 48, 40354043 (2000).Google Scholar
16. Battezzati, L., Kusy', M., Rizzi, P., Ronto', V., J. Mater. Sci., in print.Google Scholar
17. Battezzati, L., Kusy', M., Palumbo, M., Ronto', V., “Al-rare earth-transition metal alloys: fragility of melts and resistance to crystallisation”, Proc. PROSIZE, Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors, NATO Adv. Workshop, ed. Idzikowski, B. and Švec, P., (Kluwer Pub. Dordrecht, The Netherlands), in print.Google Scholar
18. Rizzi, P., Antonione, C., Baricco, M., Battezzati, L., Armelao, L., Tondello, E., Fabrizio, M., Daolio, S., Nanostructured Materials, 10, 767776 (1998).Google Scholar
19. Gao, M. C. and Shiflet, G. J., Intermetallics, 10, 11311139 (2002).Google Scholar
20. Arjuna Rao, A., Murty, B. S. and Chakraborty, M., Mater. Sci. Technol., 13, 769777 (1997).Google Scholar
21. deBoer, F. R., Boom, R., W, , Mattens, C. M., Miedema, A. R. and Niessen, A. K., Cohesion in Metals, (North Holland, Amsterdam, 1988).Google Scholar
22. Ansara, I., Dupin, N., Lukas, H. L., Sundman, B., I. All. Comp., 247, 20 (1997).Google Scholar
23. Cacciamani, G. and Ferro, R., Calphad, 25, 583 (2001).Google Scholar
24. Palumbo, M.. Baricco, M.. Battezzati, L., Cacciamani, G. and Borzone, G., Euromat 2003, Lausanne, Switzerland (2003), Symp. T1.Google Scholar
25. Borgenstam, A., Engström, A., Höglund, L. and Ågren, J., J. Phase Equil., 21, 269 (2000).Google Scholar
26. Pampillo, C. A., J. Mater. Sci., 43, 1194 (1975).Google Scholar
27. Gao, M. C., Hackenberg, R. E., Shiflet, G. J., Mater. Trans., 42, 1741 (2001).Google Scholar
28. Chen, H., He, Y., Shiflet, G. J. and Poon, S. J., Nature, 367, 541 (1994).Google Scholar