Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-14T06:16:33.087Z Has data issue: false hasContentIssue false

Angle-Resolved X-Ray Photoelectron Spectroscopy for the Characterization of GaAs(001) and Inp(001) Surfaces

Published online by Cambridge University Press:  25 February 2011

Patrick Alnot
Affiliation:
LCR THOMSON-CSF Domaine de Corbeville 91401 ORSAY Cedex, FRANCE
J. Olivier
Affiliation:
LCR THOMSON-CSF Domaine de Corbeville 91401 ORSAY Cedex, FRANCE
F. Wyczisk
Affiliation:
LCR THOMSON-CSF Domaine de Corbeville 91401 ORSAY Cedex, FRANCE
Get access

Abstract

Electron scattering and diffraction in X-ray photoemission spectroscopy (XPS) have been used to characterize GaAs(001) and InP(001) chemically etched surfaces. 6a(3d),As(3d), In(4d) and P(2p) photoelectrons have been observed as a function of polar angles for the two [1–10] and [110] azimuths For kinetic energy range of these photoelectrons the experimental results have been correctly predicted by the single-scattering cluster model with spherical-wave corrections.

The problems of quantitative measurements in XPS have been discussed in relation with the diffraction phenomena.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Siegbahn, K., Gelius, U., Siegbahn, H. and Olson, E., Physica Scripta 1 (1970) 272.CrossRefGoogle Scholar
2) Fadley, C.S. and Bergstrom, S.A.L., Phys. Lett. 35A (1971) 375 CrossRefGoogle Scholar
3) Kono, S., Goldberg, S.M., Hall, N.F.T. and Fadley, C.S. Phys. Rev. Lett. 41 (1978) 1831.; S. Kono, .M. Goldberg, N.F.T. Hall and C.S. Fadley, Physical Review B 22 (1980) 6085.Google Scholar
4) Fadley, C.S., in Progress in Surface Science, 16, ed Davison, S. (Pergamon, New York, 1985) p. 275; and Physica Scripta to appearGoogle Scholar
5) Chambers, S.A., Anderson, S.B. and Weaver, J.H., Phys. Rev. B 32 (1985) 581 CrossRefGoogle Scholar
6) Takahashi, S., Kono, S., Sakurai, H. and Sagawa, T., J. Phys. Soc. Jpn. 51 (1982) 3296.CrossRefGoogle Scholar
7) Owari, M., Kudo, M. and Nihei, Y., J. Electron Spectrosc. Relat. Phenom., 34 (1984) 215.CrossRefGoogle Scholar
8) Owari, M., Kudo, M., Nihei, Y. and Kamada, H., Jpn. J. Appl. Phys. 24 (1965) L394.CrossRefGoogle Scholar
9) Massies, J. and Contour, J.P., J. Appl. Phys. 15 (1985) 806.CrossRefGoogle Scholar
10) Alnot, P., Wyczisk, F. and Friederich, A., Surface Science 162 (1985) 708.Google Scholar
11) Alnot, P., Massies, J., Contour, J.P. to be publishedGoogle Scholar
12) Sagurton, M., Bullock, E.L., Saiki, R., Kaduwela, A., Brundle, C.R. and Fadley, C.S. Physical Review B 33 (1986) 2207.CrossRefGoogle Scholar
13) Tong, S.Y., Poon, H.C. and Snider, D.R., Phys. Rev. B 32 (1985) 2096.Google Scholar
14) Scofield, J.H., J. Elect. Spect. 8 (1976) 129 CrossRefGoogle Scholar
15) Alnot, P. and Olivier, J. to be published.Google Scholar