Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-14T05:49:57.518Z Has data issue: false hasContentIssue false

Angular and Energy Distributions of RH Atoms Desorbed in an Excited State from Ion-Bombarded Rh{100}

Published online by Cambridge University Press:  26 February 2011

Roya Maboudian
Affiliation:
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
M. El-Maazawi
Affiliation:
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
Z. Postawa
Affiliation:
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
N. Winograd
Affiliation:
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

Multiphoton resonance ionization spectroscopy has been used to determine the polar-angle and the kinetic-energy distributions of rhodium atoms desorbed from ion-bombarded Rh{100} surface in the fine-structure components of the a 4Fj (J=9/2 and 7/2) ground-state multiplet. The peak in the energy distribution of the metastable level (4F7/2 with excitation energy of 0.2 eV) is found to occur roughly at the same value as the ground-state (4F9/2) distribution but decays more gradually at higher energies. The measured spectra have been used to investigate the dependence of the excitation probability on the takeoff angle (θ) as well as the emission velocity (v). It is shown that the excitation probability depends strongly on these parameters, approaching an exponential dependence on l/[v cos(θ)] at higher velocities (> 5×l05cm/sec).

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Betz, G., Nucl. Instr. Meth. B27, 104 (1987).Google Scholar
2. Tsong, I. S. and Yusuf, N. A., Nucl. Instr. Meth. 170, 357 (1980).Google Scholar
3. Dzioba, S., Auciello, O., and Kelly, R., Radiat. Eff. 45, 235 (1980).Google Scholar
4. Loxton, C. M. and MacDonald, R. J., Surf. Sci. 110, 339 (1981).Google Scholar
5. Snoek, C., van der Weg, W. F., and Rol, P. K., Physica 30, 341 (1964).Google Scholar
6. Van der Weg, W. F. and Bierman, D. J., Physica 44, 206 (1969).Google Scholar
7. Hagstrum, H. D., Phys. Rev. 96, 336 (1954).Google Scholar
8. White, C. W., Simms, D. L., Tolk, N. H., and McCauhgan, D. V., Surf. Sci. 49, 657 (1975).Google Scholar
9. Andresen, B., Jensen, S. B., Ramanujam, P. S., and Veje, E., Phys. Scr. 20, 65 (1979).Google Scholar
10. Kelly, R., Phys. Rev. B25, 700 (1982).Google Scholar
11. Pellin, M. J., Wright, R. B., and Gruen, D. M., J. Chem. Phys. 74, 6448 (1981).Google Scholar
12. Yu, M. L., Grischkowsky, D., and Balant, A. C., Phys. Rev. Lett. 48, 427 (1982).Google Scholar
13. Husinsky, W., Betz, G., and Girgis, I., Phys. Rev. Lett. 50, 1689 (1983).Google Scholar
14. Young, G. E., Calaway, M. F., Pellin, M. J., and Gruen, D. M., J. Vac. Sci. Technol. A2, 693 (1984).Google Scholar
15. Husinsky, W., J. Vac. Sci. Technol. B3, 1546 (1985).Google Scholar
16. Bay, H., Symposium on Sputtering 1986, Spitz/Austria, Nucl. Instr. Meth. B18, 430 (1987).Google Scholar
17. Kimock, F. M., Baxter, J. P., Pappas, D. L., Kobrin, P. H., and Winograd, N., Anal. Chem. 56, 2782 (1984).Google Scholar
18. Kimock, F. M., Pappas, D. L., and Winograd, N., Anal. Chem. 57, 2669 (1985).Google Scholar
19. Craig, B. I., Baxter, J. P., Singh, J., Schick, G. A., Kobrin, P. H., Garrison, B. J., and Winograd, N., Phys. Rev. Lett. 57, 1351 (1986).Google Scholar
20. Reimann, C. T., Walzl, K., El-Maazawi, M., Deaven, D. M., Garrison, B. J., and Winograd, N., J. Chem. Phys. 89, 2539 (1988).Google Scholar
21. Maboudian, R., Postawa, Z., El-Maazawi, M., Garrison, B. J., and Winograd, N., Phys. Rev. B 42(12), 3711 (1990).Google Scholar
22. Kobrin, P. H., Schick, G. A., Baxter, J. P., and Winograd, N., Rev. Sci. Instrum. 57, 1354 (1986).Google Scholar
23. White, C. W. and Tolk, N. H., Phys. Rev. Lett. 26, 486 (1971).Google Scholar
24. Yu, M. L., Phys. Rev. Lett. 47, 1325 (1981).Google Scholar
25. Lang, N., Phys. Rev. B 27, 2019 (1983).Google Scholar
26. Lin, J.-H. and Garrison, B. J., J. Vac. Sci. Technol. A 1, 1025 (1983).Google Scholar