Hostname: page-component-788cddb947-kc5xb Total loading time: 0 Render date: 2024-10-19T15:36:51.019Z Has data issue: false hasContentIssue false

Annealing Effect on Photoluminescence Properties of Be-Doped MBE GaAs

Published online by Cambridge University Press:  22 February 2011

Hajime Shibata
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezono, Tsukuba 305, JAPAN
Yunosuke Makita
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezono, Tsukuba 305, JAPAN
Akimasa Yamada
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezono, Tsukuba 305, JAPAN
Get access

Abstract

Low temperature (2° K) photoluminescence (PL) measurements were performed for the wavelength (λ) region from 800 to 1600 nm on Be–doped GaAs grown by molecular beam epitaxy (MBE) for wide range of net hole concentration at room temperature (p) up to 2 x 1020 cm−3 after annealing at 850 °C for 20 minutes. The annealing procedure formed several new PL emission bands associated with deep levels appeared between 0.4 and 1.4 eV. The most intensive new PL band appeared at around 1.2 eV with a band width of about 0.2 eV for all samples investigated. Its peak position and band width were observed to shift slightly toward lower energy side and increase, respectively with increasing p. An additional two sharp bands appeared overlapping the main band at around 1.31 and 1.35 eV for p less than 1 x 1018 cm−3. New broad band formation was also observed at around 1.0 eV in the same samples. In addition, a new prominent PL band was found at about 1.35 eV in the as-grown samples with p = 5 ∼ 6 x 1017 cm−3, which disappeared entirely after annealing. The formation and annihilation mechanism of these deep levels after annealing can be presumably attributed to Be redistribution from Ga sites to As sites and interstitial sites to Ga or As sites, driven by the formation of As vacancies (V As) due to As evaporation from samples during annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Makita, Y., Nomura, T., Yokota, M., Matsumori, T., Izumi, T., Takeuchi, Y., and Kudo, K., Appl. Phys. Lett. 47, 623 (1985).Google Scholar
2. Nomura, T., Makita, Y., Irie, K., Ohnishi, N., Kudo, K., Tanaka, H., and Mitsuhashi, Y., Appl. Phys. Lett. 48, 1745 (1986).Google Scholar
3. Makita, Y., Takeuchi, Y., Ohnishi, N., Nomura, T., Kudo, K., Tanaka, H., Lee, H. C., Mori, M., and Mitsuhashi, Y., Appl. Phys. Lett. 49, 1184 (1986).Google Scholar
4. Ohnishi, N., Makita, Y., Mori, M., Irie, K., Takeuchi, Y., and Shigetomi, S., J. Appl. Phys. 62, 1833 (1987).Google Scholar
5. Makita, Y., Mori, M., Ohnishi, N., Phelan, P., Taguchi, T., Sugitama, Y., and Takano, M., Mat. Res. Soc. Symp. Proc. 102, 175 (1988).Google Scholar
6. Ohnishi, N., Makita, Y., Shibata, H., Beye, A. C., Yamada, A., and Mori, M., Mat. Res. Soc. Symp. Proc. 145, 493 (1989).Google Scholar
7 Shibata, H., Makita, Y., Mori, M., Takahashi, T., Yamada, A., Mayer, K. M., Ohnishi, N., and Beye, A. C., Inst. Phys. Conf. Ser. No.106 : Chapter 5 (Proc. of the 16th International Sym. on GaAs and Related Compounds), p. 245 (1990).Google Scholar
8. Ilegems, M., in The Technology ond Physics of Molecular Beam Epitaxy, edited by Parker, E. H. C. (Plenum Press, New York, 1985) p.83.Google Scholar
9. Ilegems, M., J. Appl. Phys. 48, 1278 (1977).Google Scholar
10. Ploog, K., Fisher, A., and Kunzel, K., J. Electrochem. Soc. 128, 400 (1981).Google Scholar
11. Scott, G. B., Duggan, G., Wawson, P., Weimann, G., J. Appl. Phys. 52, 6888 (1981).Google Scholar
12. Duhamel, N., Henoc, P.. Alexandre, F., and Rao, E. V. K., Appl. Phys. Lett. 39, 49 (1981).Google Scholar
13. Bhattacharya, P. K., Buhlmann, H. J., Ilegems, M., and Staehli, J. L., J. Appl. Phys. 65, 6931 (1982).Google Scholar
14. Wiley, J. D., in Semiconductor and Semimetals, Vol.10, edited by Willardson, R. K. and , Beer (Academic Press, New York, 1975) p.91.Google Scholar
15. Look, D. C., in Electrical Characterization of GaAs Materials and Devices (John Wily & Sons, 1989).Google Scholar
16. Shibata, H., Makita, Y., Yamada, A., Ohnishi, N., Mori, M., Nakayama, Y., Beye, A. C., Mayer, K. M., Takahashi, T., Sugiyama, Y., Tacano, M., Ishituka, K., and Matsumori, T., Mat. Res. Soc. Symp. Proc. 163, 121 (1990).Google Scholar
17. Chang, L. L., Esaki, L., and Tsu, R., Appl. Phys. Lett. 19, 143 (1971).Google Scholar
18. Chatterjee, P. K., Vaidyanathan, K. V., Durschlag, M. S., and Streetman, B. G., Solid State Commun. 17, 1421 (1975).Google Scholar
19. Lum, W. Y. and Wieder, H. H., J. Appl. Phys. 49, 6187 (1978).Google Scholar
20. Williams, E. W., Phys. Rev. 168, 922 (1968).Google Scholar
21. Shigetomi, S. and Matsumori, T., Phys. Stat. Sol. 89, K79 (1985).Google Scholar
22. Scolfaro, L. M. R., Menezes, E. A., Mendonca, C. A. C., Leite, J. R., and Martins, J. V. M., Materials Science Forum Vols.65–66 (1990) pp. 369.Google Scholar