Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-07T16:22:29.316Z Has data issue: false hasContentIssue false

Atmospheric Pressure Chemical Vapor Deposition of Gallium Nitride Thin Films

Published online by Cambridge University Press:  25 February 2011

Roy G. Gordon
Affiliation:
Harvard University, Department of Chemistry, 12 Oxford Street, Cambridge, MA 02138
David M. Hoffman
Affiliation:
University of Houston, Department of Chemistry, Houston, TX 77204
Umar Riaz
Affiliation:
Harvard University, Department of Chemistry, 12 Oxford Street, Cambridge, MA 02138
Get access

Abstract

The atmospheric-pressure chemical vapor deposition of gallium nitride films from hexakis(dimethylamido)digallium, Ga2(NMe2)6, and ammonia precursors at 200 °C with growth rates up to 1000 Å/min is described. The films were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and Rutherford backscattering spectrometry. Rutherford backscattering analysis showed that the N/Ga ratio was 1.12–1.17. The films were crystalline with ≃ 5–15 nm crystallites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shintani, A., Minagawa, S., J. Electrochem. Soc. 123, 1725 (1976).Google Scholar
2. Maruska, H. P., Tietjen, J. J., Appl. Phys. Lett. L5, 327 (1969).Google Scholar
3. Born, P. J., Robertson, D. S., J. Mater. Sci 15, 3003 (1980).Google Scholar
4. Chu, T. L., J. Electrochem. Soc. 118, 1200 (1971).Google Scholar
5. Manasevit, H. M., Herdmann, F. M., Simpson, W. I., J. Electrochem. Soc. 118, 1864 (1971).Google Scholar
6. Gaskill, D. K., Bottka, N., Lin, M. C., J. Cryst. Growth 72, 418 (1986).Google Scholar
7. Kouvetakis, J., Beach, D. B., Chem. Mater. 1, 476 (1989)Google Scholar
8. Fix, R. M., Gordon, R. G., Hoffman, D. M., Mater. Res. Soc. Symp. Proc. 168, 357 (1990).Google Scholar
9. Fix, R. M., Gordon, R. G., Hoffman, D. M., J. Am. Chem. Soc. 112, 7833 (1990).Google Scholar
10. Gordon, R. G., Hoffman, D. M., Riaz, U., Chem. Mater. 2, 480 (1990).Google Scholar
11. Gordon, R. G., Hoffman, D. M., Riaz, U., J. Mater. Res. in press.Google Scholar
12. Gordon, R. G., Hoffman, D. M., Riaz, U., unpublished results.Google Scholar
13. Waggoner, K. M., Olmstead, M. M., Power, P. P., Polyhedron 9, 257 (1990).Google Scholar
14. Noth, H., Konrad, P., Z. Naturforsh. B. 10, 234 (1955).Google Scholar
15. Kurtz, S. R., Gordon, R. G., Thin Solid Films 140, 277 (1986)Google Scholar
16. GaN: Index No. 2–1078. Powder Diffraction File, editor-in-chief: McClune, W. F. (JCPDS International Centre for Diffraction Data, Swarthmore, PA 19081-2389, USA).Google Scholar
17. Practical Surface Analysis, edited by Briggs, D., Seah, M.P. (John Wiley, New York, 1983), p. 498.Google Scholar
18. Lappert, M. F., Power, P. P., Sanger, A. R., Srivastava, R. C., Metal and Metalloid Amides (John Wiley & Sons, New York, 1980), pp. 2223 and Chapters 4-9.Google Scholar