Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-10T07:40:50.838Z Has data issue: false hasContentIssue false

Boron Ted in Pre-Amorphised SI: Role of the A/C Interface

Published online by Cambridge University Press:  10 February 2011

D. Mathiot
Affiliation:
E.R.M.-PHASE / CNRS, ENSPS, Bd Sdbastien Brant, 67400 Illkirch (France)
C. Bonafos
Affiliation:
C.E.M.E.S./ CNRS, BP 4347, 31055 Toulouse cedex (France)
M. OMRI
Affiliation:
C.E.M.E.S./ CNRS, BP 4347, 31055 Toulouse cedex (France)
D. Alquier
Affiliation:
L.A.A.S./ CNRS, 7 Av. du colonel Roche, 31077 Toulouse cedex (France)
A. Martinez
Affiliation:
L.A.A.S./ CNRS, 7 Av. du colonel Roche, 31077 Toulouse cedex (France)
A. Claverie
Affiliation:
C.E.M.E.S./ CNRS, BP 4347, 31055 Toulouse cedex (France)
Get access

Abstract

In this paper we first review the main experimental results concerning boron diffusion in preamorphised silicon, focusing on the role played by the End Of Range defects. It is then shown that the application of the Ostwald ripening theory to the particular geometry of these defects permits to understand why and how they affect dopant diffusion. Contradictory experimental results can be reconciled if one considers that most of the diffusion enhancement occurs during the nucleation stage of the extended defects, and that the amorphous / crystalline interface is a perfect screen for the diffusion of the self-interstitials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Carter, C., Maszara, W., Sadana, D.K., Rozgonyi, G.A., Liu, J., and Wortman, J., Appl. Phys. Lett. 44, 459 (1984)Google Scholar
[2] Jones, K.S., Prussin, S., and Weber, E.R., Appl. Phys. A 45, 1 (1988)Google Scholar
[3] Sedgwick, T.O., Michel, A.E., Deline, V.R., Cohen, S.A., and Laski, J.B., J. Appl. Phys. 63, 1452 (1988),Google Scholar
[4] Servidori, M., Angelucci, R., Cembali, F., Negrini, P., Solmi, S., Zaumseil, P., and Winter, U., J. Appl. Phys. 61, 1834 (1987)Google Scholar
[5] Mathiot, D., Claverie, A., and Martinez, A., “Diffusion in silicon : 10 years of research”, Defect and Diffusion Data 153155, 11 (1998)Google Scholar
[6] Servidori, M., Sourek, Z., and Solmi, S., J. Appl. Phys. 62, 1723 (1987)Google Scholar
[7] Kim, Y.M., Lo, G.Q., Kinoshita, H., Kwong, D.L., Tseng, H.H., and Hance, R., J. Elelectrochem. Soc. 138, 1122 (1991)Google Scholar
[8] Bonafos, C., Omri, M., de Mauduit, B., Assayag, G.Ben, Claverie, A., Alquier, D., Martinez, A., and Mathiot, D., J. Appl. Phys. 82, 2855 (1997)Google Scholar
[9] Chao, H.S., Griffin, P.B., and Plummer, J.D., Appl. Phys. Lett. 68, 3570 (1996)Google Scholar
[10] Jones, K.S., Moller, K., Chen, J., Puga-Lambers, M., Freer, B., Berstein, J., and Rubin, L., J.Appl. Phys. 81, 6051 (1997)Google Scholar
[11] Omri, M., Bonafos, C., Claverie, A., Nejim, A., Cristiano, F., Alquier, D., Martinez, A., and Cowern, N.E.B., Nucl. Inst. and Method in Phys. Res. B 120, 5 (1996)Google Scholar
[12] Csetregi, L., Mayer, J.W., and Sigmon, T.W., J. Appl. Phys. 49, 3906 (1978)Google Scholar