Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-12T03:39:17.875Z Has data issue: false hasContentIssue false

Bulk Crystal Growth of Hg1−xCdxTe for Avalanche Photodiode Applications*

Published online by Cambridge University Press:  25 February 2011

T. Nguyen Duy
Affiliation:
Société Anonyme de Télécommunications, 41 Rue Cantagrel 75631 PARIS CEDEX 13
A. Durand
Affiliation:
Société Anonyme de Télécommunications, 41 Rue Cantagrel 75631 PARIS CEDEX 13
J. L. Lyot
Affiliation:
Société Anonyme de Télécommunications, 41 Rue Cantagrel 75631 PARIS CEDEX 13
Get access

Abstract

High gap Hg1−xCdxTe (MCT) crystal is grown by a solvent method using a travelling heater zone. The use of the solvent zone permits a low temperature and low mercury pressure growth of MCT in a large composition range. In the Cadmium rich alloy range the MCT material exhibits a large spin orbit coupling leading to a resonance at Eg = ΔO. Due to this particular resonance effect the ionization coefficient of hole is higher than that of the electron, resulting in a low exess noise factor in the avalanche photodiodes whose bandgap energy is close to the spin orbit splitting ΔO.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work partly supported by the DAII

References

REFERENCES

1 Brau, M. J U.S Patent No3 656 944 (1972)Google Scholar
2 Schmit, J. L J. Cryst. Growth 65 249 (1983)Google Scholar
3 Hein, C. C. U.S Patent No 2 747–71Google Scholar
4 Stello, P. H. U.S Patent No 2 829 994Google Scholar
5 Broder, J. D, Wolff, G. A. J. Electrochem. Soc. 110 (11) 1963, 1150 Google Scholar
6 Triboulet, R. Marfaing, Y. J. Cryst. Growth 51 79 (1981)Google Scholar
7 Triboulet, R. Triboulet, D., Didier, G. J. Cryst Growth 38 82 (1977)CrossRefGoogle Scholar
8 Triboulet, R., duy, I. N Guyen, Durand, A. J. VAC. SCI.Tech. A 3(1) 95 1985 CrossRefGoogle Scholar
9 Harman, T. C. J. Electron. Mater. 2(1) 230 (1972)Google Scholar
10 Fewster, P. F, Cole, S., Willoughly, A.I.W, Brown, M. J.Appl. Phys. 52, 7, 4568 (1981)Google Scholar
11 Hirsh, P. B, Pirouz, P., Roberts, S.G., Warren, P. D, Phil. mag. (1985)Google Scholar
12 Brossat, T., Raymond, F. J. Cryst. Growth 72 280 (1985)Google Scholar
13 Amirtharaj, P. M, Pollak, F.H, Furdyna, J. K. Solid. St. COM. 39 35 (1981)Google Scholar
14 Cardona, M., Shaklee, K.L., Pollak, F. H. phys. Rev. 154, 696 (1967)Google Scholar
15 Nguyen, C. Huong, Van et Al J.Cryst. Growth 72 419 (1985)Google Scholar
16 Hildebrand, O., Kuebart, W., Pilkuln, M. H. Appl. Phys. Letters 37 801 (1980)Google Scholar
17 Meslage, J., Pichard, G. et Al SPIE Proc. 18-22 April Geneva (1983)Google Scholar
18 Verié, C. et Al J. Cryst. Growth 59 342 (1982)Google Scholar
19 Orsal, B., Alabedra, R. et Al Opto 86 to be publishedGoogle Scholar
20 Flachet, J. C, Royer, M., Carpentier, Y., Pichard, G. SPIE Proc. Cannes 1985 Google Scholar
21 Durand, A., Dessus, J. L, duy, T. Nguyen SPIE Proc Innsbruck 14-18 April 1986 Google Scholar
22 Cole, S., Willoughby, A.F.W., Brown, M.. J. Cryst. Growth 59, 370, (1982)Google Scholar
23 Sharma, B. B, Metha, S. K.. Phys. Stat Sol a, 60 k, 105 (1980)Google Scholar
24 Balagurova, , Khabarov, . Journ. Soviet Phys. (1976)Google Scholar